1 /*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
4 *
5 *
6 *
7 *
8 *
9 *
10 *
11 *
12 *
13 *
14 *
15 *
16 *
17 *
18 *
19 *
20 *
21 *
22 *
23 *
24 */
25
26 package java.util;
27
28 import java.io.BufferedWriter;
29 import java.io.Closeable;
30 import java.io.IOException;
31 import java.io.File;
32 import java.io.FileOutputStream;
33 import java.io.FileNotFoundException;
34 import java.io.Flushable;
35 import java.io.OutputStream;
36 import java.io.OutputStreamWriter;
37 import java.io.PrintStream;
38 import java.io.UnsupportedEncodingException;
39 import java.math.BigDecimal;
40 import java.math.BigInteger;
41 import java.math.MathContext;
42 import java.math.RoundingMode;
43 import java.nio.charset.Charset;
44 import java.nio.charset.IllegalCharsetNameException;
45 import java.nio.charset.UnsupportedCharsetException;
46 import java.text.DateFormatSymbols;
47 import java.text.DecimalFormat;
48 import java.text.DecimalFormatSymbols;
49 import java.text.NumberFormat;
50 import java.util.regex.Matcher;
51 import java.util.regex.Pattern;
52
53 import java.time.DateTimeException;
54 import java.time.Instant;
55 import java.time.ZoneId;
56 import java.time.ZoneOffset;
57 import java.time.temporal.ChronoField;
58 import java.time.temporal.TemporalAccessor;
59 import java.time.temporal.TemporalQueries;
60
61 import sun.misc.DoubleConsts;
62 import sun.misc.FormattedFloatingDecimal;
63
64 /**
65 * An interpreter for printf-style format strings. This class provides support
66 * for layout justification and alignment, common formats for numeric, string,
67 * and date/time data, and locale-specific output. Common Java types such as
68 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
69 * are supported. Limited formatting customization for arbitrary user types is
70 * provided through the {@link Formattable} interface.
71 *
72 * <p> Formatters are not necessarily safe for multithreaded access. Thread
73 * safety is optional and is the responsibility of users of methods in this
74 * class.
75 *
76 * <p> Formatted printing for the Java language is heavily inspired by C's
77 * {@code printf}. Although the format strings are similar to C, some
78 * customizations have been made to accommodate the Java language and exploit
79 * some of its features. Also, Java formatting is more strict than C's; for
80 * example, if a conversion is incompatible with a flag, an exception will be
81 * thrown. In C inapplicable flags are silently ignored. The format strings
82 * are thus intended to be recognizable to C programmers but not necessarily
83 * completely compatible with those in C.
84 *
85 * <p> Examples of expected usage:
86 *
87 * <blockquote><pre>
88 * StringBuilder sb = new StringBuilder();
89 * // Send all output to the Appendable object sb
90 * Formatter formatter = new Formatter(sb, Locale.US);
91 *
92 * // Explicit argument indices may be used to re-order output.
93 * formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
94 * // -> " d c b a"
95 *
96 * // Optional locale as the first argument can be used to get
97 * // locale-specific formatting of numbers. The precision and width can be
98 * // given to round and align the value.
99 * formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
100 * // -> "e = +2,7183"
101 *
102 * // The '(' numeric flag may be used to format negative numbers with
103 * // parentheses rather than a minus sign. Group separators are
104 * // automatically inserted.
105 * formatter.format("Amount gained or lost since last statement: $ %(,.2f",
106 * balanceDelta);
107 * // -> "Amount gained or lost since last statement: $ (6,217.58)"
108 * </pre></blockquote>
109 *
110 * <p> Convenience methods for common formatting requests exist as illustrated
111 * by the following invocations:
112 *
113 * <blockquote><pre>
114 * // Writes a formatted string to System.out.
115 * System.out.format("Local time: %tT", Calendar.getInstance());
116 * // -> "Local time: 13:34:18"
117 *
118 * // Writes formatted output to System.err.
119 * System.err.printf("Unable to open file '%1$s': %2$s",
120 * fileName, exception.getMessage());
121 * // -> "Unable to open file 'food': No such file or directory"
122 * </pre></blockquote>
123 *
124 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
125 * method {@link String#format(String,Object...) String.format}:
126 *
127 * <blockquote><pre>
128 * // Format a string containing a date.
129 * import java.util.Calendar;
130 * import java.util.GregorianCalendar;
131 * import static java.util.Calendar.*;
132 *
133 * Calendar c = new GregorianCalendar(1995, MAY, 23);
134 * String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
135 * // -> s == "Duke's Birthday: May 23, 1995"
136 * </pre></blockquote>
137 *
138 * <h3><a name="org">Organization</a></h3>
139 *
140 * <p> This specification is divided into two sections. The first section, <a
141 * href="#summary">Summary</a>, covers the basic formatting concepts. This
142 * section is intended for users who want to get started quickly and are
143 * familiar with formatted printing in other programming languages. The second
144 * section, <a href="#detail">Details</a>, covers the specific implementation
145 * details. It is intended for users who want more precise specification of
146 * formatting behavior.
147 *
148 * <h3><a name="summary">Summary</a></h3>
149 *
150 * <p> This section is intended to provide a brief overview of formatting
151 * concepts. For precise behavioral details, refer to the <a
152 * href="#detail">Details</a> section.
153 *
154 * <h4><a name="syntax">Format String Syntax</a></h4>
155 *
156 * <p> Every method which produces formatted output requires a <i>format
157 * string</i> and an <i>argument list</i>. The format string is a {@link
158 * String} which may contain fixed text and one or more embedded <i>format
159 * specifiers</i>. Consider the following example:
160 *
161 * <blockquote><pre>
162 * Calendar c = ...;
163 * String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
164 * </pre></blockquote>
165 *
166 * This format string is the first argument to the {@code format} method. It
167 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
168 * "{@code %1$tY}" which indicate how the arguments should be processed and
169 * where they should be inserted in the text. The remaining portions of the
170 * format string are fixed text including {@code "Dukes Birthday: "} and any
171 * other spaces or punctuation.
172 *
173 * The argument list consists of all arguments passed to the method after the
174 * format string. In the above example, the argument list is of size one and
175 * consists of the {@link java.util.Calendar Calendar} object {@code c}.
176 *
177 * <ul>
178 *
179 * <li> The format specifiers for general, character, and numeric types have
180 * the following syntax:
181 *
182 * <blockquote><pre>
183 * %[argument_index$][flags][width][.precision]conversion
184 * </pre></blockquote>
185 *
186 * <p> The optional <i>argument_index</i> is a decimal integer indicating the
187 * position of the argument in the argument list. The first argument is
188 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
189 *
190 * <p> The optional <i>flags</i> is a set of characters that modify the output
191 * format. The set of valid flags depends on the conversion.
192 *
193 * <p> The optional <i>width</i> is a positive decimal integer indicating
194 * the minimum number of characters to be written to the output.
195 *
196 * <p> The optional <i>precision</i> is a non-negative decimal integer usually
197 * used to restrict the number of characters. The specific behavior depends on
198 * the conversion.
199 *
200 * <p> The required <i>conversion</i> is a character indicating how the
201 * argument should be formatted. The set of valid conversions for a given
202 * argument depends on the argument's data type.
203 *
204 * <li> The format specifiers for types which are used to represents dates and
205 * times have the following syntax:
206 *
207 * <blockquote><pre>
208 * %[argument_index$][flags][width]conversion
209 * </pre></blockquote>
210 *
211 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
212 * defined as above.
213 *
214 * <p> The required <i>conversion</i> is a two character sequence. The first
215 * character is {@code 't'} or {@code 'T'}. The second character indicates
216 * the format to be used. These characters are similar to but not completely
217 * identical to those defined by GNU {@code date} and POSIX
218 * {@code strftime(3c)}.
219 *
220 * <li> The format specifiers which do not correspond to arguments have the
221 * following syntax:
222 *
223 * <blockquote><pre>
224 * %[flags][width]conversion
225 * </pre></blockquote>
226 *
227 * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
228 *
229 * <p> The required <i>conversion</i> is a character indicating content to be
230 * inserted in the output.
231 *
232 * </ul>
233 *
234 * <h4> Conversions </h4>
235 *
236 * <p> Conversions are divided into the following categories:
237 *
238 * <ol>
239 *
240 * <li> <b>General</b> - may be applied to any argument
241 * type
242 *
243 * <li> <b>Character</b> - may be applied to basic types which represent
244 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
245 * Byte}, {@code short}, and {@link Short}. This conversion may also be
246 * applied to the types {@code int} and {@link Integer} when {@link
247 * Character#isValidCodePoint} returns {@code true}
248 *
249 * <li> <b>Numeric</b>
250 *
251 * <ol>
252 *
253 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
254 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
255 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
256 * BigInteger} (but not {@code char} or {@link Character})
257 *
258 * <li><b>Floating Point</b> - may be applied to Java floating-point types:
259 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
260 * java.math.BigDecimal BigDecimal}
261 *
262 * </ol>
263 *
264 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
265 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
266 * {@link Date} and {@link TemporalAccessor TemporalAccessor}
267 *
268 * <li> <b>Percent</b> - produces a literal {@code '%'}
269 * (<tt>'\u0025'</tt>)
270 *
271 * <li> <b>Line Separator</b> - produces the platform-specific line separator
272 *
273 * </ol>
274 *
275 * <p> The following table summarizes the supported conversions. Conversions
276 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
277 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
278 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
279 * lower-case conversion characters except that the result is converted to
280 * upper case according to the rules of the prevailing {@link java.util.Locale
281 * Locale}. The result is equivalent to the following invocation of {@link
282 * String#toUpperCase()}
283 *
284 * <pre>
285 * out.toUpperCase() </pre>
286 *
287 * <table cellpadding=5 summary="genConv">
288 *
289 * <tr><th valign="bottom"> Conversion
290 * <th valign="bottom"> Argument Category
291 * <th valign="bottom"> Description
292 *
293 * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
294 * <td valign="top"> general
295 * <td> If the argument <i>arg</i> is {@code null}, then the result is
296 * "{@code false}". If <i>arg</i> is a {@code boolean} or {@link
297 * Boolean}, then the result is the string returned by {@link
298 * String#valueOf(boolean) String.valueOf(arg)}. Otherwise, the result is
299 * "true".
300 *
301 * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
302 * <td valign="top"> general
303 * <td> If the argument <i>arg</i> is {@code null}, then the result is
304 * "{@code null}". Otherwise, the result is obtained by invoking
305 * {@code Integer.toHexString(arg.hashCode())}.
306 *
307 * <tr><td valign="top"> {@code 's'}, {@code 'S'}
308 * <td valign="top"> general
309 * <td> If the argument <i>arg</i> is {@code null}, then the result is
310 * "{@code null}". If <i>arg</i> implements {@link Formattable}, then
311 * {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
312 * result is obtained by invoking {@code arg.toString()}.
313 *
314 * <tr><td valign="top">{@code 'c'}, {@code 'C'}
315 * <td valign="top"> character
316 * <td> The result is a Unicode character
317 *
318 * <tr><td valign="top">{@code 'd'}
319 * <td valign="top"> integral
320 * <td> The result is formatted as a decimal integer
321 *
322 * <tr><td valign="top">{@code 'o'}
323 * <td valign="top"> integral
324 * <td> The result is formatted as an octal integer
325 *
326 * <tr><td valign="top">{@code 'x'}, {@code 'X'}
327 * <td valign="top"> integral
328 * <td> The result is formatted as a hexadecimal integer
329 *
330 * <tr><td valign="top">{@code 'e'}, {@code 'E'}
331 * <td valign="top"> floating point
332 * <td> The result is formatted as a decimal number in computerized
333 * scientific notation
334 *
335 * <tr><td valign="top">{@code 'f'}
336 * <td valign="top"> floating point
337 * <td> The result is formatted as a decimal number
338 *
339 * <tr><td valign="top">{@code 'g'}, {@code 'G'}
340 * <td valign="top"> floating point
341 * <td> The result is formatted using computerized scientific notation or
342 * decimal format, depending on the precision and the value after rounding.
343 *
344 * <tr><td valign="top">{@code 'a'}, {@code 'A'}
345 * <td valign="top"> floating point
346 * <td> The result is formatted as a hexadecimal floating-point number with
347 * a significand and an exponent. This conversion is <b>not</b> supported
348 * for the {@code BigDecimal} type despite the latter's being in the
349 * <i>floating point</i> argument category.
350 *
351 * <tr><td valign="top">{@code 't'}, {@code 'T'}
352 * <td valign="top"> date/time
353 * <td> Prefix for date and time conversion characters. See <a
354 * href="#dt">Date/Time Conversions</a>.
355 *
356 * <tr><td valign="top">{@code '%'}
357 * <td valign="top"> percent
358 * <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>)
359 *
360 * <tr><td valign="top">{@code 'n'}
361 * <td valign="top"> line separator
362 * <td> The result is the platform-specific line separator
363 *
364 * </table>
365 *
366 * <p> Any characters not explicitly defined as conversions are illegal and are
367 * reserved for future extensions.
368 *
369 * <h4><a name="dt">Date/Time Conversions</a></h4>
370 *
371 * <p> The following date and time conversion suffix characters are defined for
372 * the {@code 't'} and {@code 'T'} conversions. The types are similar to but
373 * not completely identical to those defined by GNU {@code date} and POSIX
374 * {@code strftime(3c)}. Additional conversion types are provided to access
375 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
376 * second).
377 *
378 * <p> The following conversion characters are used for formatting times:
379 *
380 * <table cellpadding=5 summary="time">
381 *
382 * <tr><td valign="top"> {@code 'H'}
383 * <td> Hour of the day for the 24-hour clock, formatted as two digits with
384 * a leading zero as necessary i.e. {@code 00 - 23}.
385 *
386 * <tr><td valign="top">{@code 'I'}
387 * <td> Hour for the 12-hour clock, formatted as two digits with a leading
388 * zero as necessary, i.e. {@code 01 - 12}.
389 *
390 * <tr><td valign="top">{@code 'k'}
391 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
392 *
393 * <tr><td valign="top">{@code 'l'}
394 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
395 *
396 * <tr><td valign="top">{@code 'M'}
397 * <td> Minute within the hour formatted as two digits with a leading zero
398 * as necessary, i.e. {@code 00 - 59}.
399 *
400 * <tr><td valign="top">{@code 'S'}
401 * <td> Seconds within the minute, formatted as two digits with a leading
402 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
403 * value required to support leap seconds).
404 *
405 * <tr><td valign="top">{@code 'L'}
406 * <td> Millisecond within the second formatted as three digits with
407 * leading zeros as necessary, i.e. {@code 000 - 999}.
408 *
409 * <tr><td valign="top">{@code 'N'}
410 * <td> Nanosecond within the second, formatted as nine digits with leading
411 * zeros as necessary, i.e. {@code 000000000 - 999999999}.
412 *
413 * <tr><td valign="top">{@code 'p'}
414 * <td> Locale-specific {@linkplain
415 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
416 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
417 * prefix {@code 'T'} forces this output to upper case.
418 *
419 * <tr><td valign="top">{@code 'z'}
420 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a>
421 * style numeric time zone offset from GMT, e.g. {@code -0800}. This
422 * value will be adjusted as necessary for Daylight Saving Time. For
423 * {@code long}, {@link Long}, and {@link Date} the time zone used is
424 * the {@linkplain TimeZone#getDefault() default time zone} for this
425 * instance of the Java virtual machine.
426 *
427 * <tr><td valign="top">{@code 'Z'}
428 * <td> A string representing the abbreviation for the time zone. This
429 * value will be adjusted as necessary for Daylight Saving Time. For
430 * {@code long}, {@link Long}, and {@link Date} the time zone used is
431 * the {@linkplain TimeZone#getDefault() default time zone} for this
432 * instance of the Java virtual machine. The Formatter's locale will
433 * supersede the locale of the argument (if any).
434 *
435 * <tr><td valign="top">{@code 's'}
436 * <td> Seconds since the beginning of the epoch starting at 1 January 1970
437 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
438 * {@code Long.MAX_VALUE/1000}.
439 *
440 * <tr><td valign="top">{@code 'Q'}
441 * <td> Milliseconds since the beginning of the epoch starting at 1 January
442 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
443 * {@code Long.MAX_VALUE}.
444 *
445 * </table>
446 *
447 * <p> The following conversion characters are used for formatting dates:
448 *
449 * <table cellpadding=5 summary="date">
450 *
451 * <tr><td valign="top">{@code 'B'}
452 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
453 * full month name}, e.g. {@code "January"}, {@code "February"}.
454 *
455 * <tr><td valign="top">{@code 'b'}
456 * <td> Locale-specific {@linkplain
457 * java.text.DateFormatSymbols#getShortMonths abbreviated month name},
458 * e.g. {@code "Jan"}, {@code "Feb"}.
459 *
460 * <tr><td valign="top">{@code 'h'}
461 * <td> Same as {@code 'b'}.
462 *
463 * <tr><td valign="top">{@code 'A'}
464 * <td> Locale-specific full name of the {@linkplain
465 * java.text.DateFormatSymbols#getWeekdays day of the week},
466 * e.g. {@code "Sunday"}, {@code "Monday"}
467 *
468 * <tr><td valign="top">{@code 'a'}
469 * <td> Locale-specific short name of the {@linkplain
470 * java.text.DateFormatSymbols#getShortWeekdays day of the week},
471 * e.g. {@code "Sun"}, {@code "Mon"}
472 *
473 * <tr><td valign="top">{@code 'C'}
474 * <td> Four-digit year divided by {@code 100}, formatted as two digits
475 * with leading zero as necessary, i.e. {@code 00 - 99}
476 *
477 * <tr><td valign="top">{@code 'Y'}
478 * <td> Year, formatted as at least four digits with leading zeros as
479 * necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
480 * calendar.
481 *
482 * <tr><td valign="top">{@code 'y'}
483 * <td> Last two digits of the year, formatted with leading zeros as
484 * necessary, i.e. {@code 00 - 99}.
485 *
486 * <tr><td valign="top">{@code 'j'}
487 * <td> Day of year, formatted as three digits with leading zeros as
488 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
489 *
490 * <tr><td valign="top">{@code 'm'}
491 * <td> Month, formatted as two digits with leading zeros as necessary,
492 * i.e. {@code 01 - 13}.
493 *
494 * <tr><td valign="top">{@code 'd'}
495 * <td> Day of month, formatted as two digits with leading zeros as
496 * necessary, i.e. {@code 01 - 31}
497 *
498 * <tr><td valign="top">{@code 'e'}
499 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
500 *
501 * </table>
502 *
503 * <p> The following conversion characters are used for formatting common
504 * date/time compositions.
505 *
506 * <table cellpadding=5 summary="composites">
507 *
508 * <tr><td valign="top">{@code 'R'}
509 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
510 *
511 * <tr><td valign="top">{@code 'T'}
512 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
513 *
514 * <tr><td valign="top">{@code 'r'}
515 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
516 * The location of the morning or afternoon marker ({@code '%Tp'}) may be
517 * locale-dependent.
518 *
519 * <tr><td valign="top">{@code 'D'}
520 * <td> Date formatted as {@code "%tm/%td/%ty"}.
521 *
522 * <tr><td valign="top">{@code 'F'}
523 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a>
524 * complete date formatted as {@code "%tY-%tm-%td"}.
525 *
526 * <tr><td valign="top">{@code 'c'}
527 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
528 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
529 *
530 * </table>
531 *
532 * <p> Any characters not explicitly defined as date/time conversion suffixes
533 * are illegal and are reserved for future extensions.
534 *
535 * <h4> Flags </h4>
536 *
537 * <p> The following table summarizes the supported flags. <i>y</i> means the
538 * flag is supported for the indicated argument types.
539 *
540 * <table cellpadding=5 summary="genConv">
541 *
542 * <tr><th valign="bottom"> Flag <th valign="bottom"> General
543 * <th valign="bottom"> Character <th valign="bottom"> Integral
544 * <th valign="bottom"> Floating Point
545 * <th valign="bottom"> Date/Time
546 * <th valign="bottom"> Description
547 *
548 * <tr><td> '-' <td align="center" valign="top"> y
549 * <td align="center" valign="top"> y
550 * <td align="center" valign="top"> y
551 * <td align="center" valign="top"> y
552 * <td align="center" valign="top"> y
553 * <td> The result will be left-justified.
554 *
555 * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
556 * <td align="center" valign="top"> -
557 * <td align="center" valign="top"> y<sup>3</sup>
558 * <td align="center" valign="top"> y
559 * <td align="center" valign="top"> -
560 * <td> The result should use a conversion-dependent alternate form
561 *
562 * <tr><td> '+' <td align="center" valign="top"> -
563 * <td align="center" valign="top"> -
564 * <td align="center" valign="top"> y<sup>4</sup>
565 * <td align="center" valign="top"> y
566 * <td align="center" valign="top"> -
567 * <td> The result will always include a sign
568 *
569 * <tr><td> ' ' <td align="center" valign="top"> -
570 * <td align="center" valign="top"> -
571 * <td align="center" valign="top"> y<sup>4</sup>
572 * <td align="center" valign="top"> y
573 * <td align="center" valign="top"> -
574 * <td> The result will include a leading space for positive values
575 *
576 * <tr><td> '0' <td align="center" valign="top"> -
577 * <td align="center" valign="top"> -
578 * <td align="center" valign="top"> y
579 * <td align="center" valign="top"> y
580 * <td align="center" valign="top"> -
581 * <td> The result will be zero-padded
582 *
583 * <tr><td> ',' <td align="center" valign="top"> -
584 * <td align="center" valign="top"> -
585 * <td align="center" valign="top"> y<sup>2</sup>
586 * <td align="center" valign="top"> y<sup>5</sup>
587 * <td align="center" valign="top"> -
588 * <td> The result will include locale-specific {@linkplain
589 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
590 *
591 * <tr><td> '(' <td align="center" valign="top"> -
592 * <td align="center" valign="top"> -
593 * <td align="center" valign="top"> y<sup>4</sup>
594 * <td align="center" valign="top"> y<sup>5</sup>
595 * <td align="center"> -
596 * <td> The result will enclose negative numbers in parentheses
597 *
598 * </table>
599 *
600 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
601 *
602 * <p> <sup>2</sup> For {@code 'd'} conversion only.
603 *
604 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
605 * conversions only.
606 *
607 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
608 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
609 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
610 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
611 *
612 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
613 * {@code 'g'}, and {@code 'G'} conversions only.
614 *
615 * <p> Any characters not explicitly defined as flags are illegal and are
616 * reserved for future extensions.
617 *
618 * <h4> Width </h4>
619 *
620 * <p> The width is the minimum number of characters to be written to the
621 * output. For the line separator conversion, width is not applicable; if it
622 * is provided, an exception will be thrown.
623 *
624 * <h4> Precision </h4>
625 *
626 * <p> For general argument types, the precision is the maximum number of
627 * characters to be written to the output.
628 *
629 * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
630 * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
631 * radix point. If the conversion is {@code 'g'} or {@code 'G'}, then the
632 * precision is the total number of digits in the resulting magnitude after
633 * rounding.
634 *
635 * <p> For character, integral, and date/time argument types and the percent
636 * and line separator conversions, the precision is not applicable; if a
637 * precision is provided, an exception will be thrown.
638 *
639 * <h4> Argument Index </h4>
640 *
641 * <p> The argument index is a decimal integer indicating the position of the
642 * argument in the argument list. The first argument is referenced by
643 * "{@code 1$}", the second by "{@code 2$}", etc.
644 *
645 * <p> Another way to reference arguments by position is to use the
646 * {@code '<'} (<tt>'\u003c'</tt>) flag, which causes the argument for
647 * the previous format specifier to be re-used. For example, the following two
648 * statements would produce identical strings:
649 *
650 * <blockquote><pre>
651 * Calendar c = ...;
652 * String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
653 *
654 * String s2 = String.format("Duke's Birthday: %1$tm %<te,%<tY", c);
655 * </pre></blockquote>
656 *
657 * <hr>
658 * <h3><a name="detail">Details</a></h3>
659 *
660 * <p> This section is intended to provide behavioral details for formatting,
661 * including conditions and exceptions, supported data types, localization, and
662 * interactions between flags, conversions, and data types. For an overview of
663 * formatting concepts, refer to the <a href="#summary">Summary</a>
664 *
665 * <p> Any characters not explicitly defined as conversions, date/time
666 * conversion suffixes, or flags are illegal and are reserved for
667 * future extensions. Use of such a character in a format string will
668 * cause an {@link UnknownFormatConversionException} or {@link
669 * UnknownFormatFlagsException} to be thrown.
670 *
671 * <p> If the format specifier contains a width or precision with an invalid
672 * value or which is otherwise unsupported, then a {@link
673 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
674 * respectively will be thrown.
675 *
676 * <p> If a format specifier contains a conversion character that is not
677 * applicable to the corresponding argument, then an {@link
678 * IllegalFormatConversionException} will be thrown.
679 *
680 * <p> All specified exceptions may be thrown by any of the {@code format}
681 * methods of {@code Formatter} as well as by any {@code format} convenience
682 * methods such as {@link String#format(String,Object...) String.format} and
683 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
684 *
685 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
686 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
687 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
688 * corresponding lower-case conversion characters except that the result is
689 * converted to upper case according to the rules of the prevailing {@link
690 * java.util.Locale Locale}. The result is equivalent to the following
691 * invocation of {@link String#toUpperCase()}
692 *
693 * <pre>
694 * out.toUpperCase() </pre>
695 *
696 * <h4><a name="dgen">General</a></h4>
697 *
698 * <p> The following general conversions may be applied to any argument type:
699 *
700 * <table cellpadding=5 summary="dgConv">
701 *
702 * <tr><td valign="top"> {@code 'b'}
703 * <td valign="top"> <tt>'\u0062'</tt>
704 * <td> Produces either "{@code true}" or "{@code false}" as returned by
705 * {@link Boolean#toString(boolean)}.
706 *
707 * <p> If the argument is {@code null}, then the result is
708 * "{@code false}". If the argument is a {@code boolean} or {@link
709 * Boolean}, then the result is the string returned by {@link
710 * String#valueOf(boolean) String.valueOf()}. Otherwise, the result is
711 * "{@code true}".
712 *
713 * <p> If the {@code '#'} flag is given, then a {@link
714 * FormatFlagsConversionMismatchException} will be thrown.
715 *
716 * <tr><td valign="top"> {@code 'B'}
717 * <td valign="top"> <tt>'\u0042'</tt>
718 * <td> The upper-case variant of {@code 'b'}.
719 *
720 * <tr><td valign="top"> {@code 'h'}
721 * <td valign="top"> <tt>'\u0068'</tt>
722 * <td> Produces a string representing the hash code value of the object.
723 *
724 * <p> If the argument, <i>arg</i> is {@code null}, then the
725 * result is "{@code null}". Otherwise, the result is obtained
726 * by invoking {@code Integer.toHexString(arg.hashCode())}.
727 *
728 * <p> If the {@code '#'} flag is given, then a {@link
729 * FormatFlagsConversionMismatchException} will be thrown.
730 *
731 * <tr><td valign="top"> {@code 'H'}
732 * <td valign="top"> <tt>'\u0048'</tt>
733 * <td> The upper-case variant of {@code 'h'}.
734 *
735 * <tr><td valign="top"> {@code 's'}
736 * <td valign="top"> <tt>'\u0073'</tt>
737 * <td> Produces a string.
738 *
739 * <p> If the argument is {@code null}, then the result is
740 * "{@code null}". If the argument implements {@link Formattable}, then
741 * its {@link Formattable#formatTo formatTo} method is invoked.
742 * Otherwise, the result is obtained by invoking the argument's
743 * {@code toString()} method.
744 *
745 * <p> If the {@code '#'} flag is given and the argument is not a {@link
746 * Formattable} , then a {@link FormatFlagsConversionMismatchException}
747 * will be thrown.
748 *
749 * <tr><td valign="top"> {@code 'S'}
750 * <td valign="top"> <tt>'\u0053'</tt>
751 * <td> The upper-case variant of {@code 's'}.
752 *
753 * </table>
754 *
755 * <p> The following <a name="dFlags">flags</a> apply to general conversions:
756 *
757 * <table cellpadding=5 summary="dFlags">
758 *
759 * <tr><td valign="top"> {@code '-'}
760 * <td valign="top"> <tt>'\u002d'</tt>
761 * <td> Left justifies the output. Spaces (<tt>'\u0020'</tt>) will be
762 * added at the end of the converted value as required to fill the minimum
763 * width of the field. If the width is not provided, then a {@link
764 * MissingFormatWidthException} will be thrown. If this flag is not given
765 * then the output will be right-justified.
766 *
767 * <tr><td valign="top"> {@code '#'}
768 * <td valign="top"> <tt>'\u0023'</tt>
769 * <td> Requires the output use an alternate form. The definition of the
770 * form is specified by the conversion.
771 *
772 * </table>
773 *
774 * <p> The <a name="genWidth">width</a> is the minimum number of characters to
775 * be written to the
776 * output. If the length of the converted value is less than the width then
777 * the output will be padded by <tt>' '</tt> (<tt>'\u0020'</tt>)
778 * until the total number of characters equals the width. The padding is on
779 * the left by default. If the {@code '-'} flag is given, then the padding
780 * will be on the right. If the width is not specified then there is no
781 * minimum.
782 *
783 * <p> The precision is the maximum number of characters to be written to the
784 * output. The precision is applied before the width, thus the output will be
785 * truncated to {@code precision} characters even if the width is greater than
786 * the precision. If the precision is not specified then there is no explicit
787 * limit on the number of characters.
788 *
789 * <h4><a name="dchar">Character</a></h4>
790 *
791 * This conversion may be applied to {@code char} and {@link Character}. It
792 * may also be applied to the types {@code byte}, {@link Byte},
793 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
794 * {@link Character#isValidCodePoint} returns {@code true}. If it returns
795 * {@code false} then an {@link IllegalFormatCodePointException} will be
796 * thrown.
797 *
798 * <table cellpadding=5 summary="charConv">
799 *
800 * <tr><td valign="top"> {@code 'c'}
801 * <td valign="top"> <tt>'\u0063'</tt>
802 * <td> Formats the argument as a Unicode character as described in <a
803 * href="../lang/Character.html#unicode">Unicode Character
804 * Representation</a>. This may be more than one 16-bit {@code char} in
805 * the case where the argument represents a supplementary character.
806 *
807 * <p> If the {@code '#'} flag is given, then a {@link
808 * FormatFlagsConversionMismatchException} will be thrown.
809 *
810 * <tr><td valign="top"> {@code 'C'}
811 * <td valign="top"> <tt>'\u0043'</tt>
812 * <td> The upper-case variant of {@code 'c'}.
813 *
814 * </table>
815 *
816 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
817 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link
818 * FormatFlagsConversionMismatchException} will be thrown.
819 *
820 * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
821 *
822 * <p> The precision is not applicable. If the precision is specified then an
823 * {@link IllegalFormatPrecisionException} will be thrown.
824 *
825 * <h4><a name="dnum">Numeric</a></h4>
826 *
827 * <p> Numeric conversions are divided into the following categories:
828 *
829 * <ol>
830 *
831 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
832 *
833 * <li> <a href="#dnbint"><b>BigInteger</b></a>
834 *
835 * <li> <a href="#dndec"><b>Float and Double</b></a>
836 *
837 * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
838 *
839 * </ol>
840 *
841 * <p> Numeric types will be formatted according to the following algorithm:
842 *
843 * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
844 *
845 * <p> After digits are obtained for the integer part, fractional part, and
846 * exponent (as appropriate for the data type), the following transformation
847 * is applied:
848 *
849 * <ol>
850 *
851 * <li> Each digit character <i>d</i> in the string is replaced by a
852 * locale-specific digit computed relative to the current locale's
853 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
854 * <i>z</i>; that is <i>d - </i> {@code '0'}
855 * <i> + z</i>.
856 *
857 * <li> If a decimal separator is present, a locale-specific {@linkplain
858 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
859 * substituted.
860 *
861 * <li> If the {@code ','} (<tt>'\u002c'</tt>)
862 * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
863 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
864 * inserted by scanning the integer part of the string from least significant
865 * to most significant digits and inserting a separator at intervals defined by
866 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
867 * size}.
868 *
869 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
870 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
871 * after the sign character, if any, and before the first non-zero digit, until
872 * the length of the string is equal to the requested field width.
873 *
874 * <li> If the value is negative and the {@code '('} flag is given, then a
875 * {@code '('} (<tt>'\u0028'</tt>) is prepended and a {@code ')'}
876 * (<tt>'\u0029'</tt>) is appended.
877 *
878 * <li> If the value is negative (or floating-point negative zero) and
879 * {@code '('} flag is not given, then a {@code '-'} (<tt>'\u002d'</tt>)
880 * is prepended.
881 *
882 * <li> If the {@code '+'} flag is given and the value is positive or zero (or
883 * floating-point positive zero), then a {@code '+'} (<tt>'\u002b'</tt>)
884 * will be prepended.
885 *
886 * </ol>
887 *
888 * <p> If the value is NaN or positive infinity the literal strings "NaN" or
889 * "Infinity" respectively, will be output. If the value is negative infinity,
890 * then the output will be "(Infinity)" if the {@code '('} flag is given
891 * otherwise the output will be "-Infinity". These values are not localized.
892 *
893 * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
894 *
895 * <p> The following conversions may be applied to {@code byte}, {@link Byte},
896 * {@code short}, {@link Short}, {@code int} and {@link Integer},
897 * {@code long}, and {@link Long}.
898 *
899 * <table cellpadding=5 summary="IntConv">
900 *
901 * <tr><td valign="top"> {@code 'd'}
902 * <td valign="top"> <tt>'\u0064'</tt>
903 * <td> Formats the argument as a decimal integer. The <a
904 * href="#L10nAlgorithm">localization algorithm</a> is applied.
905 *
906 * <p> If the {@code '0'} flag is given and the value is negative, then
907 * the zero padding will occur after the sign.
908 *
909 * <p> If the {@code '#'} flag is given then a {@link
910 * FormatFlagsConversionMismatchException} will be thrown.
911 *
912 * <tr><td valign="top"> {@code 'o'}
913 * <td valign="top"> <tt>'\u006f'</tt>
914 * <td> Formats the argument as an integer in base eight. No localization
915 * is applied.
916 *
917 * <p> If <i>x</i> is negative then the result will be an unsigned value
918 * generated by adding 2<sup>n</sup> to the value where {@code n} is the
919 * number of bits in the type as returned by the static {@code SIZE} field
920 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
921 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
922 * classes as appropriate.
923 *
924 * <p> If the {@code '#'} flag is given then the output will always begin
925 * with the radix indicator {@code '0'}.
926 *
927 * <p> If the {@code '0'} flag is given then the output will be padded
928 * with leading zeros to the field width following any indication of sign.
929 *
930 * <p> If {@code '('}, {@code '+'}, ' ', or {@code ','} flags
931 * are given then a {@link FormatFlagsConversionMismatchException} will be
932 * thrown.
933 *
934 * <tr><td valign="top"> {@code 'x'}
935 * <td valign="top"> <tt>'\u0078'</tt>
936 * <td> Formats the argument as an integer in base sixteen. No
937 * localization is applied.
938 *
939 * <p> If <i>x</i> is negative then the result will be an unsigned value
940 * generated by adding 2<sup>n</sup> to the value where {@code n} is the
941 * number of bits in the type as returned by the static {@code SIZE} field
942 * in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
943 * {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
944 * classes as appropriate.
945 *
946 * <p> If the {@code '#'} flag is given then the output will always begin
947 * with the radix indicator {@code "0x"}.
948 *
949 * <p> If the {@code '0'} flag is given then the output will be padded to
950 * the field width with leading zeros after the radix indicator or sign (if
951 * present).
952 *
953 * <p> If {@code '('}, <tt>' '</tt>, {@code '+'}, or
954 * {@code ','} flags are given then a {@link
955 * FormatFlagsConversionMismatchException} will be thrown.
956 *
957 * <tr><td valign="top"> {@code 'X'}
958 * <td valign="top"> <tt>'\u0058'</tt>
959 * <td> The upper-case variant of {@code 'x'}. The entire string
960 * representing the number will be converted to {@linkplain
961 * String#toUpperCase upper case} including the {@code 'x'} (if any) and
962 * all hexadecimal digits {@code 'a'} - {@code 'f'}
963 * (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>).
964 *
965 * </table>
966 *
967 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
968 * both the {@code '#'} and the {@code '0'} flags are given, then result will
969 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
970 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
971 * and the value.
972 *
973 * <p> If the {@code '-'} flag is not given, then the space padding will occur
974 * before the sign.
975 *
976 * <p> The following <a name="intFlags">flags</a> apply to numeric integral
977 * conversions:
978 *
979 * <table cellpadding=5 summary="intFlags">
980 *
981 * <tr><td valign="top"> {@code '+'}
982 * <td valign="top"> <tt>'\u002b'</tt>
983 * <td> Requires the output to include a positive sign for all positive
984 * numbers. If this flag is not given then only negative values will
985 * include a sign.
986 *
987 * <p> If both the {@code '+'} and <tt>' '</tt> flags are given
988 * then an {@link IllegalFormatFlagsException} will be thrown.
989 *
990 * <tr><td valign="top"> <tt>' '</tt>
991 * <td valign="top"> <tt>'\u0020'</tt>
992 * <td> Requires the output to include a single extra space
993 * (<tt>'\u0020'</tt>) for non-negative values.
994 *
995 * <p> If both the {@code '+'} and <tt>' '</tt> flags are given
996 * then an {@link IllegalFormatFlagsException} will be thrown.
997 *
998 * <tr><td valign="top"> {@code '0'}
999 * <td valign="top"> <tt>'\u0030'</tt>
1000 * <td> Requires the output to be padded with leading {@linkplain
1001 * java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1002 * width following any sign or radix indicator except when converting NaN
1003 * or infinity. If the width is not provided, then a {@link
1004 * MissingFormatWidthException} will be thrown.
1005 *
1006 * <p> If both the {@code '-'} and {@code '0'} flags are given then an
1007 * {@link IllegalFormatFlagsException} will be thrown.
1008 *
1009 * <tr><td valign="top"> {@code ','}
1010 * <td valign="top"> <tt>'\u002c'</tt>
1011 * <td> Requires the output to include the locale-specific {@linkplain
1012 * java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1013 * described in the <a href="#L10nGroup">"group" section</a> of the
1014 * localization algorithm.
1015 *
1016 * <tr><td valign="top"> {@code '('}
1017 * <td valign="top"> <tt>'\u0028'</tt>
1018 * <td> Requires the output to prepend a {@code '('}
1019 * (<tt>'\u0028'</tt>) and append a {@code ')'}
1020 * (<tt>'\u0029'</tt>) to negative values.
1021 *
1022 * </table>
1023 *
1024 * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1025 * as follows:
1026 *
1027 * <ul>
1028 *
1029 * <li> The output is right-justified within the {@code width}
1030 *
1031 * <li> Negative numbers begin with a {@code '-'} (<tt>'\u002d'</tt>)
1032 *
1033 * <li> Positive numbers and zero do not include a sign or extra leading
1034 * space
1035 *
1036 * <li> No grouping separators are included
1037 *
1038 * </ul>
1039 *
1040 * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1041 * be written to the output. This includes any signs, digits, grouping
1042 * separators, radix indicator, and parentheses. If the length of the
1043 * converted value is less than the width then the output will be padded by
1044 * spaces (<tt>'\u0020'</tt>) until the total number of characters equals
1045 * width. The padding is on the left by default. If {@code '-'} flag is
1046 * given then the padding will be on the right. If width is not specified then
1047 * there is no minimum.
1048 *
1049 * <p> The precision is not applicable. If precision is specified then an
1050 * {@link IllegalFormatPrecisionException} will be thrown.
1051 *
1052 * <p><a name="dnbint"><b> BigInteger </b></a>
1053 *
1054 * <p> The following conversions may be applied to {@link
1055 * java.math.BigInteger}.
1056 *
1057 * <table cellpadding=5 summary="BIntConv">
1058 *
1059 * <tr><td valign="top"> {@code 'd'}
1060 * <td valign="top"> <tt>'\u0064'</tt>
1061 * <td> Requires the output to be formatted as a decimal integer. The <a
1062 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1063 *
1064 * <p> If the {@code '#'} flag is given {@link
1065 * FormatFlagsConversionMismatchException} will be thrown.
1066 *
1067 * <tr><td valign="top"> {@code 'o'}
1068 * <td valign="top"> <tt>'\u006f'</tt>
1069 * <td> Requires the output to be formatted as an integer in base eight.
1070 * No localization is applied.
1071 *
1072 * <p> If <i>x</i> is negative then the result will be a signed value
1073 * beginning with {@code '-'} (<tt>'\u002d'</tt>). Signed output is
1074 * allowed for this type because unlike the primitive types it is not
1075 * possible to create an unsigned equivalent without assuming an explicit
1076 * data-type size.
1077 *
1078 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1079 * then the result will begin with {@code '+'} (<tt>'\u002b'</tt>).
1080 *
1081 * <p> If the {@code '#'} flag is given then the output will always begin
1082 * with {@code '0'} prefix.
1083 *
1084 * <p> If the {@code '0'} flag is given then the output will be padded
1085 * with leading zeros to the field width following any indication of sign.
1086 *
1087 * <p> If the {@code ','} flag is given then a {@link
1088 * FormatFlagsConversionMismatchException} will be thrown.
1089 *
1090 * <tr><td valign="top"> {@code 'x'}
1091 * <td valign="top"> <tt>'\u0078'</tt>
1092 * <td> Requires the output to be formatted as an integer in base
1093 * sixteen. No localization is applied.
1094 *
1095 * <p> If <i>x</i> is negative then the result will be a signed value
1096 * beginning with {@code '-'} (<tt>'\u002d'</tt>). Signed output is
1097 * allowed for this type because unlike the primitive types it is not
1098 * possible to create an unsigned equivalent without assuming an explicit
1099 * data-type size.
1100 *
1101 * <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1102 * then the result will begin with {@code '+'} (<tt>'\u002b'</tt>).
1103 *
1104 * <p> If the {@code '#'} flag is given then the output will always begin
1105 * with the radix indicator {@code "0x"}.
1106 *
1107 * <p> If the {@code '0'} flag is given then the output will be padded to
1108 * the field width with leading zeros after the radix indicator or sign (if
1109 * present).
1110 *
1111 * <p> If the {@code ','} flag is given then a {@link
1112 * FormatFlagsConversionMismatchException} will be thrown.
1113 *
1114 * <tr><td valign="top"> {@code 'X'}
1115 * <td valign="top"> <tt>'\u0058'</tt>
1116 * <td> The upper-case variant of {@code 'x'}. The entire string
1117 * representing the number will be converted to {@linkplain
1118 * String#toUpperCase upper case} including the {@code 'x'} (if any) and
1119 * all hexadecimal digits {@code 'a'} - {@code 'f'}
1120 * (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>).
1121 *
1122 * </table>
1123 *
1124 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1125 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1126 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1127 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1128 * and the value.
1129 *
1130 * <p> If the {@code '0'} flag is given and the value is negative, then the
1131 * zero padding will occur after the sign.
1132 *
1133 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1134 * before the sign.
1135 *
1136 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1137 * Long apply. The <a href="#intdFlags">default behavior</a> when no flags are
1138 * given is the same as for Byte, Short, Integer, and Long.
1139 *
1140 * <p> The specification of <a href="#intWidth">width</a> is the same as
1141 * defined for Byte, Short, Integer, and Long.
1142 *
1143 * <p> The precision is not applicable. If precision is specified then an
1144 * {@link IllegalFormatPrecisionException} will be thrown.
1145 *
1146 * <p><a name="dndec"><b> Float and Double</b></a>
1147 *
1148 * <p> The following conversions may be applied to {@code float}, {@link
1149 * Float}, {@code double} and {@link Double}.
1150 *
1151 * <table cellpadding=5 summary="floatConv">
1152 *
1153 * <tr><td valign="top"> {@code 'e'}
1154 * <td valign="top"> <tt>'\u0065'</tt>
1155 * <td> Requires the output to be formatted using <a
1156 * name="scientific">computerized scientific notation</a>. The <a
1157 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1158 *
1159 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1160 *
1161 * <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1162 * "Infinity", respectively, will be output. These values are not
1163 * localized.
1164 *
1165 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1166 * will be {@code "+00"}.
1167 *
1168 * <p> Otherwise, the result is a string that represents the sign and
1169 * magnitude (absolute value) of the argument. The formatting of the sign
1170 * is described in the <a href="#L10nAlgorithm">localization
1171 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1172 * value.
1173 *
1174 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1175 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1176 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1177 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the
1178 * integer part of <i>a</i>, as a single decimal digit, followed by the
1179 * decimal separator followed by decimal digits representing the fractional
1180 * part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1181 * (<tt>'\u0065'</tt>), followed by the sign of the exponent, followed
1182 * by a representation of <i>n</i> as a decimal integer, as produced by the
1183 * method {@link Long#toString(long, int)}, and zero-padded to include at
1184 * least two digits.
1185 *
1186 * <p> The number of digits in the result for the fractional part of
1187 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1188 * specified then the default value is {@code 6}. If the precision is less
1189 * than the number of digits which would appear after the decimal point in
1190 * the string returned by {@link Float#toString(float)} or {@link
1191 * Double#toString(double)} respectively, then the value will be rounded
1192 * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1193 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1194 * For a canonical representation of the value, use {@link
1195 * Float#toString(float)} or {@link Double#toString(double)} as
1196 * appropriate.
1197 *
1198 * <p>If the {@code ','} flag is given, then an {@link
1199 * FormatFlagsConversionMismatchException} will be thrown.
1200 *
1201 * <tr><td valign="top"> {@code 'E'}
1202 * <td valign="top"> <tt>'\u0045'</tt>
1203 * <td> The upper-case variant of {@code 'e'}. The exponent symbol
1204 * will be {@code 'E'} (<tt>'\u0045'</tt>).
1205 *
1206 * <tr><td valign="top"> {@code 'g'}
1207 * <td valign="top"> <tt>'\u0067'</tt>
1208 * <td> Requires the output to be formatted in general scientific notation
1209 * as described below. The <a href="#L10nAlgorithm">localization
1210 * algorithm</a> is applied.
1211 *
1212 * <p> After rounding for the precision, the formatting of the resulting
1213 * magnitude <i>m</i> depends on its value.
1214 *
1215 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1216 * than 10<sup>precision</sup> then it is represented in <i><a
1217 * href="#decimal">decimal format</a></i>.
1218 *
1219 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1220 * 10<sup>precision</sup>, then it is represented in <i><a
1221 * href="#scientific">computerized scientific notation</a></i>.
1222 *
1223 * <p> The total number of significant digits in <i>m</i> is equal to the
1224 * precision. If the precision is not specified, then the default value is
1225 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1226 * {@code 1}.
1227 *
1228 * <p> If the {@code '#'} flag is given then an {@link
1229 * FormatFlagsConversionMismatchException} will be thrown.
1230 *
1231 * <tr><td valign="top"> {@code 'G'}
1232 * <td valign="top"> <tt>'\u0047'</tt>
1233 * <td> The upper-case variant of {@code 'g'}.
1234 *
1235 * <tr><td valign="top"> {@code 'f'}
1236 * <td valign="top"> <tt>'\u0066'</tt>
1237 * <td> Requires the output to be formatted using <a name="decimal">decimal
1238 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1239 * applied.
1240 *
1241 * <p> The result is a string that represents the sign and magnitude
1242 * (absolute value) of the argument. The formatting of the sign is
1243 * described in the <a href="#L10nAlgorithm">localization
1244 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1245 * value.
1246 *
1247 * <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1248 * "Infinity", respectively, will be output. These values are not
1249 * localized.
1250 *
1251 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1252 * leading zeroes, followed by the decimal separator followed by one or
1253 * more decimal digits representing the fractional part of <i>m</i>.
1254 *
1255 * <p> The number of digits in the result for the fractional part of
1256 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1257 * specified then the default value is {@code 6}. If the precision is less
1258 * than the number of digits which would appear after the decimal point in
1259 * the string returned by {@link Float#toString(float)} or {@link
1260 * Double#toString(double)} respectively, then the value will be rounded
1261 * using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1262 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1263 * For a canonical representation of the value, use {@link
1264 * Float#toString(float)} or {@link Double#toString(double)} as
1265 * appropriate.
1266 *
1267 * <tr><td valign="top"> {@code 'a'}
1268 * <td valign="top"> <tt>'\u0061'</tt>
1269 * <td> Requires the output to be formatted in hexadecimal exponential
1270 * form. No localization is applied.
1271 *
1272 * <p> The result is a string that represents the sign and magnitude
1273 * (absolute value) of the argument <i>x</i>.
1274 *
1275 * <p> If <i>x</i> is negative or a negative-zero value then the result
1276 * will begin with {@code '-'} (<tt>'\u002d'</tt>).
1277 *
1278 * <p> If <i>x</i> is positive or a positive-zero value and the
1279 * {@code '+'} flag is given then the result will begin with {@code '+'}
1280 * (<tt>'\u002b'</tt>).
1281 *
1282 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1283 *
1284 * <ul>
1285 *
1286 * <li> If the value is NaN or infinite, the literal strings "NaN" or
1287 * "Infinity", respectively, will be output.
1288 *
1289 * <li> If <i>m</i> is zero then it is represented by the string
1290 * {@code "0x0.0p0"}.
1291 *
1292 * <li> If <i>m</i> is a {@code double} value with a normalized
1293 * representation then substrings are used to represent the significand and
1294 * exponent fields. The significand is represented by the characters
1295 * {@code "0x1."} followed by the hexadecimal representation of the rest
1296 * of the significand as a fraction. The exponent is represented by
1297 * {@code 'p'} (<tt>'\u0070'</tt>) followed by a decimal string of the
1298 * unbiased exponent as if produced by invoking {@link
1299 * Integer#toString(int) Integer.toString} on the exponent value. If the
1300 * precision is specified, the value is rounded to the given number of
1301 * hexadecimal digits.
1302 *
1303 * <li> If <i>m</i> is a {@code double} value with a subnormal
1304 * representation then, unless the precision is specified to be in the range
1305 * 1 through 12, inclusive, the significand is represented by the characters
1306 * {@code '0x0.'} followed by the hexadecimal representation of the rest of
1307 * the significand as a fraction, and the exponent represented by
1308 * {@code 'p-1022'}. If the precision is in the interval
1309 * [1, 12], the subnormal value is normalized such that it
1310 * begins with the characters {@code '0x1.'}, rounded to the number of
1311 * hexadecimal digits of precision, and the exponent adjusted
1312 * accordingly. Note that there must be at least one nonzero digit in a
1313 * subnormal significand.
1314 *
1315 * </ul>
1316 *
1317 * <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1318 * FormatFlagsConversionMismatchException} will be thrown.
1319 *
1320 * <tr><td valign="top"> {@code 'A'}
1321 * <td valign="top"> <tt>'\u0041'</tt>
1322 * <td> The upper-case variant of {@code 'a'}. The entire string
1323 * representing the number will be converted to upper case including the
1324 * {@code 'x'} (<tt>'\u0078'</tt>) and {@code 'p'}
1325 * (<tt>'\u0070'</tt> and all hexadecimal digits {@code 'a'} -
1326 * {@code 'f'} (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>).
1327 *
1328 * </table>
1329 *
1330 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1331 * Long apply.
1332 *
1333 * <p> If the {@code '#'} flag is given, then the decimal separator will
1334 * always be present.
1335 *
1336 * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1337 * is as follows:
1338 *
1339 * <ul>
1340 *
1341 * <li> The output is right-justified within the {@code width}
1342 *
1343 * <li> Negative numbers begin with a {@code '-'}
1344 *
1345 * <li> Positive numbers and positive zero do not include a sign or extra
1346 * leading space
1347 *
1348 * <li> No grouping separators are included
1349 *
1350 * <li> The decimal separator will only appear if a digit follows it
1351 *
1352 * </ul>
1353 *
1354 * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1355 * to be written to the output. This includes any signs, digits, grouping
1356 * separators, decimal separators, exponential symbol, radix indicator,
1357 * parentheses, and strings representing infinity and NaN as applicable. If
1358 * the length of the converted value is less than the width then the output
1359 * will be padded by spaces (<tt>'\u0020'</tt>) until the total number of
1360 * characters equals width. The padding is on the left by default. If the
1361 * {@code '-'} flag is given then the padding will be on the right. If width
1362 * is not specified then there is no minimum.
1363 *
1364 * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1365 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1366 * after the decimal separator. If the precision is not specified, then it is
1367 * assumed to be {@code 6}.
1368 *
1369 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1370 * the total number of significant digits in the resulting magnitude after
1371 * rounding. If the precision is not specified, then the default value is
1372 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1373 * {@code 1}.
1374 *
1375 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1376 * is the number of hexadecimal digits after the radix point. If the
1377 * precision is not provided, then all of the digits as returned by {@link
1378 * Double#toHexString(double)} will be output.
1379 *
1380 * <p><a name="dnbdec"><b> BigDecimal </b></a>
1381 *
1382 * <p> The following conversions may be applied {@link java.math.BigDecimal
1383 * BigDecimal}.
1384 *
1385 * <table cellpadding=5 summary="floatConv">
1386 *
1387 * <tr><td valign="top"> {@code 'e'}
1388 * <td valign="top"> <tt>'\u0065'</tt>
1389 * <td> Requires the output to be formatted using <a
1390 * name="bscientific">computerized scientific notation</a>. The <a
1391 * href="#L10nAlgorithm">localization algorithm</a> is applied.
1392 *
1393 * <p> The formatting of the magnitude <i>m</i> depends upon its value.
1394 *
1395 * <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1396 * will be {@code "+00"}.
1397 *
1398 * <p> Otherwise, the result is a string that represents the sign and
1399 * magnitude (absolute value) of the argument. The formatting of the sign
1400 * is described in the <a href="#L10nAlgorithm">localization
1401 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1402 * value.
1403 *
1404 * <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1405 * <= <i>m</i> < 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1406 * mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1407 * that 1 <= <i>a</i> < 10. The magnitude is then represented as the
1408 * integer part of <i>a</i>, as a single decimal digit, followed by the
1409 * decimal separator followed by decimal digits representing the fractional
1410 * part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1411 * (<tt>'\u0065'</tt>), followed by the sign of the exponent, followed
1412 * by a representation of <i>n</i> as a decimal integer, as produced by the
1413 * method {@link Long#toString(long, int)}, and zero-padded to include at
1414 * least two digits.
1415 *
1416 * <p> The number of digits in the result for the fractional part of
1417 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1418 * specified then the default value is {@code 6}. If the precision is
1419 * less than the number of digits to the right of the decimal point then
1420 * the value will be rounded using the
1421 * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1422 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1423 * For a canonical representation of the value, use {@link
1424 * BigDecimal#toString()}.
1425 *
1426 * <p> If the {@code ','} flag is given, then an {@link
1427 * FormatFlagsConversionMismatchException} will be thrown.
1428 *
1429 * <tr><td valign="top"> {@code 'E'}
1430 * <td valign="top"> <tt>'\u0045'</tt>
1431 * <td> The upper-case variant of {@code 'e'}. The exponent symbol
1432 * will be {@code 'E'} (<tt>'\u0045'</tt>).
1433 *
1434 * <tr><td valign="top"> {@code 'g'}
1435 * <td valign="top"> <tt>'\u0067'</tt>
1436 * <td> Requires the output to be formatted in general scientific notation
1437 * as described below. The <a href="#L10nAlgorithm">localization
1438 * algorithm</a> is applied.
1439 *
1440 * <p> After rounding for the precision, the formatting of the resulting
1441 * magnitude <i>m</i> depends on its value.
1442 *
1443 * <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1444 * than 10<sup>precision</sup> then it is represented in <i><a
1445 * href="#bdecimal">decimal format</a></i>.
1446 *
1447 * <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1448 * 10<sup>precision</sup>, then it is represented in <i><a
1449 * href="#bscientific">computerized scientific notation</a></i>.
1450 *
1451 * <p> The total number of significant digits in <i>m</i> is equal to the
1452 * precision. If the precision is not specified, then the default value is
1453 * {@code 6}. If the precision is {@code 0}, then it is taken to be
1454 * {@code 1}.
1455 *
1456 * <p> If the {@code '#'} flag is given then an {@link
1457 * FormatFlagsConversionMismatchException} will be thrown.
1458 *
1459 * <tr><td valign="top"> {@code 'G'}
1460 * <td valign="top"> <tt>'\u0047'</tt>
1461 * <td> The upper-case variant of {@code 'g'}.
1462 *
1463 * <tr><td valign="top"> {@code 'f'}
1464 * <td valign="top"> <tt>'\u0066'</tt>
1465 * <td> Requires the output to be formatted using <a name="bdecimal">decimal
1466 * format</a>. The <a href="#L10nAlgorithm">localization algorithm</a> is
1467 * applied.
1468 *
1469 * <p> The result is a string that represents the sign and magnitude
1470 * (absolute value) of the argument. The formatting of the sign is
1471 * described in the <a href="#L10nAlgorithm">localization
1472 * algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1473 * value.
1474 *
1475 * <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1476 * leading zeroes, followed by the decimal separator followed by one or
1477 * more decimal digits representing the fractional part of <i>m</i>.
1478 *
1479 * <p> The number of digits in the result for the fractional part of
1480 * <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1481 * specified then the default value is {@code 6}. If the precision is
1482 * less than the number of digits to the right of the decimal point
1483 * then the value will be rounded using the
1484 * {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1485 * algorithm}. Otherwise, zeros may be appended to reach the precision.
1486 * For a canonical representation of the value, use {@link
1487 * BigDecimal#toString()}.
1488 *
1489 * </table>
1490 *
1491 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1492 * Long apply.
1493 *
1494 * <p> If the {@code '#'} flag is given, then the decimal separator will
1495 * always be present.
1496 *
1497 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1498 * given is the same as for Float and Double.
1499 *
1500 * <p> The specification of <a href="#floatDWidth">width</a> and <a
1501 * href="#floatDPrec">precision</a> is the same as defined for Float and
1502 * Double.
1503 *
1504 * <h4><a name="ddt">Date/Time</a></h4>
1505 *
1506 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1507 * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1508 *
1509 * <table cellpadding=5 summary="DTConv">
1510 *
1511 * <tr><td valign="top"> {@code 't'}
1512 * <td valign="top"> <tt>'\u0074'</tt>
1513 * <td> Prefix for date and time conversion characters.
1514 * <tr><td valign="top"> {@code 'T'}
1515 * <td valign="top"> <tt>'\u0054'</tt>
1516 * <td> The upper-case variant of {@code 't'}.
1517 *
1518 * </table>
1519 *
1520 * <p> The following date and time conversion character suffixes are defined
1521 * for the {@code 't'} and {@code 'T'} conversions. The types are similar to
1522 * but not completely identical to those defined by GNU {@code date} and
1523 * POSIX {@code strftime(3c)}. Additional conversion types are provided to
1524 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1525 * within the second).
1526 *
1527 * <p> The following conversion characters are used for formatting times:
1528 *
1529 * <table cellpadding=5 summary="time">
1530 *
1531 * <tr><td valign="top"> {@code 'H'}
1532 * <td valign="top"> <tt>'\u0048'</tt>
1533 * <td> Hour of the day for the 24-hour clock, formatted as two digits with
1534 * a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1535 * corresponds to midnight.
1536 *
1537 * <tr><td valign="top">{@code 'I'}
1538 * <td valign="top"> <tt>'\u0049'</tt>
1539 * <td> Hour for the 12-hour clock, formatted as two digits with a leading
1540 * zero as necessary, i.e. {@code 01 - 12}. {@code 01} corresponds to
1541 * one o'clock (either morning or afternoon).
1542 *
1543 * <tr><td valign="top">{@code 'k'}
1544 * <td valign="top"> <tt>'\u006b'</tt>
1545 * <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1546 * {@code 0} corresponds to midnight.
1547 *
1548 * <tr><td valign="top">{@code 'l'}
1549 * <td valign="top"> <tt>'\u006c'</tt>
1550 * <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}. {@code 1}
1551 * corresponds to one o'clock (either morning or afternoon).
1552 *
1553 * <tr><td valign="top">{@code 'M'}
1554 * <td valign="top"> <tt>'\u004d'</tt>
1555 * <td> Minute within the hour formatted as two digits with a leading zero
1556 * as necessary, i.e. {@code 00 - 59}.
1557 *
1558 * <tr><td valign="top">{@code 'S'}
1559 * <td valign="top"> <tt>'\u0053'</tt>
1560 * <td> Seconds within the minute, formatted as two digits with a leading
1561 * zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1562 * value required to support leap seconds).
1563 *
1564 * <tr><td valign="top">{@code 'L'}
1565 * <td valign="top"> <tt>'\u004c'</tt>
1566 * <td> Millisecond within the second formatted as three digits with
1567 * leading zeros as necessary, i.e. {@code 000 - 999}.
1568 *
1569 * <tr><td valign="top">{@code 'N'}
1570 * <td valign="top"> <tt>'\u004e'</tt>
1571 * <td> Nanosecond within the second, formatted as nine digits with leading
1572 * zeros as necessary, i.e. {@code 000000000 - 999999999}. The precision
1573 * of this value is limited by the resolution of the underlying operating
1574 * system or hardware.
1575 *
1576 * <tr><td valign="top">{@code 'p'}
1577 * <td valign="top"> <tt>'\u0070'</tt>
1578 * <td> Locale-specific {@linkplain
1579 * java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1580 * in lower case, e.g."{@code am}" or "{@code pm}". Use of the
1581 * conversion prefix {@code 'T'} forces this output to upper case. (Note
1582 * that {@code 'p'} produces lower-case output. This is different from
1583 * GNU {@code date} and POSIX {@code strftime(3c)} which produce
1584 * upper-case output.)
1585 *
1586 * <tr><td valign="top">{@code 'z'}
1587 * <td valign="top"> <tt>'\u007a'</tt>
1588 * <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC 822</a>
1589 * style numeric time zone offset from GMT, e.g. {@code -0800}. This
1590 * value will be adjusted as necessary for Daylight Saving Time. For
1591 * {@code long}, {@link Long}, and {@link Date} the time zone used is
1592 * the {@linkplain TimeZone#getDefault() default time zone} for this
1593 * instance of the Java virtual machine.
1594 *
1595 * <tr><td valign="top">{@code 'Z'}
1596 * <td valign="top"> <tt>'\u005a'</tt>
1597 * <td> A string representing the abbreviation for the time zone. This
1598 * value will be adjusted as necessary for Daylight Saving Time. For
1599 * {@code long}, {@link Long}, and {@link Date} the time zone used is
1600 * the {@linkplain TimeZone#getDefault() default time zone} for this
1601 * instance of the Java virtual machine. The Formatter's locale will
1602 * supersede the locale of the argument (if any).
1603 *
1604 * <tr><td valign="top">{@code 's'}
1605 * <td valign="top"> <tt>'\u0073'</tt>
1606 * <td> Seconds since the beginning of the epoch starting at 1 January 1970
1607 * {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1608 * {@code Long.MAX_VALUE/1000}.
1609 *
1610 * <tr><td valign="top">{@code 'Q'}
1611 * <td valign="top"> <tt>'\u004f'</tt>
1612 * <td> Milliseconds since the beginning of the epoch starting at 1 January
1613 * 1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1614 * {@code Long.MAX_VALUE}. The precision of this value is limited by
1615 * the resolution of the underlying operating system or hardware.
1616 *
1617 * </table>
1618 *
1619 * <p> The following conversion characters are used for formatting dates:
1620 *
1621 * <table cellpadding=5 summary="date">
1622 *
1623 * <tr><td valign="top">{@code 'B'}
1624 * <td valign="top"> <tt>'\u0042'</tt>
1625 * <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1626 * full month name}, e.g. {@code "January"}, {@code "February"}.
1627 *
1628 * <tr><td valign="top">{@code 'b'}
1629 * <td valign="top"> <tt>'\u0062'</tt>
1630 * <td> Locale-specific {@linkplain
1631 * java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1632 * e.g. {@code "Jan"}, {@code "Feb"}.
1633 *
1634 * <tr><td valign="top">{@code 'h'}
1635 * <td valign="top"> <tt>'\u0068'</tt>
1636 * <td> Same as {@code 'b'}.
1637 *
1638 * <tr><td valign="top">{@code 'A'}
1639 * <td valign="top"> <tt>'\u0041'</tt>
1640 * <td> Locale-specific full name of the {@linkplain
1641 * java.text.DateFormatSymbols#getWeekdays day of the week},
1642 * e.g. {@code "Sunday"}, {@code "Monday"}
1643 *
1644 * <tr><td valign="top">{@code 'a'}
1645 * <td valign="top"> <tt>'\u0061'</tt>
1646 * <td> Locale-specific short name of the {@linkplain
1647 * java.text.DateFormatSymbols#getShortWeekdays day of the week},
1648 * e.g. {@code "Sun"}, {@code "Mon"}
1649 *
1650 * <tr><td valign="top">{@code 'C'}
1651 * <td valign="top"> <tt>'\u0043'</tt>
1652 * <td> Four-digit year divided by {@code 100}, formatted as two digits
1653 * with leading zero as necessary, i.e. {@code 00 - 99}
1654 *
1655 * <tr><td valign="top">{@code 'Y'}
1656 * <td valign="top"> <tt>'\u0059'</tt> <td> Year, formatted to at least
1657 * four digits with leading zeros as necessary, e.g. {@code 0092} equals
1658 * {@code 92} CE for the Gregorian calendar.
1659 *
1660 * <tr><td valign="top">{@code 'y'}
1661 * <td valign="top"> <tt>'\u0079'</tt>
1662 * <td> Last two digits of the year, formatted with leading zeros as
1663 * necessary, i.e. {@code 00 - 99}.
1664 *
1665 * <tr><td valign="top">{@code 'j'}
1666 * <td valign="top"> <tt>'\u006a'</tt>
1667 * <td> Day of year, formatted as three digits with leading zeros as
1668 * necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1669 * {@code 001} corresponds to the first day of the year.
1670 *
1671 * <tr><td valign="top">{@code 'm'}
1672 * <td valign="top"> <tt>'\u006d'</tt>
1673 * <td> Month, formatted as two digits with leading zeros as necessary,
1674 * i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1675 * year and ("{@code 13}" is a special value required to support lunar
1676 * calendars).
1677 *
1678 * <tr><td valign="top">{@code 'd'}
1679 * <td valign="top"> <tt>'\u0064'</tt>
1680 * <td> Day of month, formatted as two digits with leading zeros as
1681 * necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1682 * of the month.
1683 *
1684 * <tr><td valign="top">{@code 'e'}
1685 * <td valign="top"> <tt>'\u0065'</tt>
1686 * <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1687 * "{@code 1}" is the first day of the month.
1688 *
1689 * </table>
1690 *
1691 * <p> The following conversion characters are used for formatting common
1692 * date/time compositions.
1693 *
1694 * <table cellpadding=5 summary="composites">
1695 *
1696 * <tr><td valign="top">{@code 'R'}
1697 * <td valign="top"> <tt>'\u0052'</tt>
1698 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1699 *
1700 * <tr><td valign="top">{@code 'T'}
1701 * <td valign="top"> <tt>'\u0054'</tt>
1702 * <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1703 *
1704 * <tr><td valign="top">{@code 'r'}
1705 * <td valign="top"> <tt>'\u0072'</tt>
1706 * <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1707 * %Tp"}. The location of the morning or afternoon marker
1708 * ({@code '%Tp'}) may be locale-dependent.
1709 *
1710 * <tr><td valign="top">{@code 'D'}
1711 * <td valign="top"> <tt>'\u0044'</tt>
1712 * <td> Date formatted as {@code "%tm/%td/%ty"}.
1713 *
1714 * <tr><td valign="top">{@code 'F'}
1715 * <td valign="top"> <tt>'\u0046'</tt>
1716 * <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO 8601</a>
1717 * complete date formatted as {@code "%tY-%tm-%td"}.
1718 *
1719 * <tr><td valign="top">{@code 'c'}
1720 * <td valign="top"> <tt>'\u0063'</tt>
1721 * <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1722 * e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1723 *
1724 * </table>
1725 *
1726 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1727 * conversions</a> applies. If the {@code '#'} flag is given, then a {@link
1728 * FormatFlagsConversionMismatchException} will be thrown.
1729 *
1730 * <p> The width is the minimum number of characters to
1731 * be written to the output. If the length of the converted value is less than
1732 * the {@code width} then the output will be padded by spaces
1733 * (<tt>'\u0020'</tt>) until the total number of characters equals width.
1734 * The padding is on the left by default. If the {@code '-'} flag is given
1735 * then the padding will be on the right. If width is not specified then there
1736 * is no minimum.
1737 *
1738 * <p> The precision is not applicable. If the precision is specified then an
1739 * {@link IllegalFormatPrecisionException} will be thrown.
1740 *
1741 * <h4><a name="dper">Percent</a></h4>
1742 *
1743 * <p> The conversion does not correspond to any argument.
1744 *
1745 * <table cellpadding=5 summary="DTConv">
1746 *
1747 * <tr><td valign="top">{@code '%'}
1748 * <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>)
1749 *
1750 * <p> The width is the minimum number of characters to
1751 * be written to the output including the {@code '%'}. If the length of the
1752 * converted value is less than the {@code width} then the output will be
1753 * padded by spaces (<tt>'\u0020'</tt>) until the total number of
1754 * characters equals width. The padding is on the left. If width is not
1755 * specified then just the {@code '%'} is output.
1756 *
1757 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1758 * conversions</a> applies. If any other flags are provided, then a
1759 * {@link FormatFlagsConversionMismatchException} will be thrown.
1760 *
1761 * <p> The precision is not applicable. If the precision is specified an
1762 * {@link IllegalFormatPrecisionException} will be thrown.
1763 *
1764 * </table>
1765 *
1766 * <h4><a name="dls">Line Separator</a></h4>
1767 *
1768 * <p> The conversion does not correspond to any argument.
1769 *
1770 * <table cellpadding=5 summary="DTConv">
1771 *
1772 * <tr><td valign="top">{@code 'n'}
1773 * <td> the platform-specific line separator as returned by {@link
1774 * System#getProperty System.getProperty("line.separator")}.
1775 *
1776 * </table>
1777 *
1778 * <p> Flags, width, and precision are not applicable. If any are provided an
1779 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1780 * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1781 *
1782 * <h4><a name="dpos">Argument Index</a></h4>
1783 *
1784 * <p> Format specifiers can reference arguments in three ways:
1785 *
1786 * <ul>
1787 *
1788 * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1789 * argument index. The argument index is a decimal integer indicating the
1790 * position of the argument in the argument list. The first argument is
1791 * referenced by "{@code 1$}", the second by "{@code 2$}", etc. An argument
1792 * may be referenced more than once.
1793 *
1794 * <p> For example:
1795 *
1796 * <blockquote><pre>
1797 * formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1798 * "a", "b", "c", "d")
1799 * // -> "d c b a d c b a"
1800 * </pre></blockquote>
1801 *
1802 * <li> <i>Relative indexing</i> is used when the format specifier contains a
1803 * {@code '<'} (<tt>'\u003c'</tt>) flag which causes the argument for
1804 * the previous format specifier to be re-used. If there is no previous
1805 * argument, then a {@link MissingFormatArgumentException} is thrown.
1806 *
1807 * <blockquote><pre>
1808 * formatter.format("%s %s %<s %<s", "a", "b", "c", "d")
1809 * // -> "a b b b"
1810 * // "c" and "d" are ignored because they are not referenced
1811 * </pre></blockquote>
1812 *
1813 * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1814 * neither an argument index nor a {@code '<'} flag. Each format specifier
1815 * which uses ordinary indexing is assigned a sequential implicit index into
1816 * argument list which is independent of the indices used by explicit or
1817 * relative indexing.
1818 *
1819 * <blockquote><pre>
1820 * formatter.format("%s %s %s %s", "a", "b", "c", "d")
1821 * // -> "a b c d"
1822 * </pre></blockquote>
1823 *
1824 * </ul>
1825 *
1826 * <p> It is possible to have a format string which uses all forms of indexing,
1827 * for example:
1828 *
1829 * <blockquote><pre>
1830 * formatter.format("%2$s %s %<s %s", "a", "b", "c", "d")
1831 * // -> "b a a b"
1832 * // "c" and "d" are ignored because they are not referenced
1833 * </pre></blockquote>
1834 *
1835 * <p> The maximum number of arguments is limited by the maximum dimension of a
1836 * Java array as defined by
1837 * <cite>The Java™ Virtual Machine Specification</cite>.
1838 * If the argument index is does not correspond to an
1839 * available argument, then a {@link MissingFormatArgumentException} is thrown.
1840 *
1841 * <p> If there are more arguments than format specifiers, the extra arguments
1842 * are ignored.
1843 *
1844 * <p> Unless otherwise specified, passing a {@code null} argument to any
1845 * method or constructor in this class will cause a {@link
1846 * NullPointerException} to be thrown.
1847 *
1848 * @author Iris Clark
1849 * @since 1.5
1850 */
1851 public final class Formatter implements Closeable, Flushable {
1852 private Appendable a;
1853 private final Locale l;
1854
1855 private IOException lastException;
1856
1857 private final char zero;
1858 private static double scaleUp;
1859
1860 // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1861 // + 3 (max # exp digits) + 4 (error) = 30
1862 private static final int MAX_FD_CHARS = 30;
1863
1864 /**
1865 * Returns a charset object for the given charset name.
1866 * @throws NullPointerException is csn is null
1867 * @throws UnsupportedEncodingException if the charset is not supported
1868 */
1869 private static Charset toCharset(String csn)
1870 throws UnsupportedEncodingException
1871 {
1872 Objects.requireNonNull(csn, "charsetName");
1873 try {
1874 return Charset.forName(csn);
1875 } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1876 // UnsupportedEncodingException should be thrown
1877 throw new UnsupportedEncodingException(csn);
1878 }
1879 }
1880
1881 private static final Appendable nonNullAppendable(Appendable a) {
1882 if (a == null)
1883 return new StringBuilder();
1884
1885 return a;
1886 }
1887
1888 /* Private constructors */
1889 private Formatter(Locale l, Appendable a) {
1890 this.a = a;
1891 this.l = l;
1892 this.zero = getZero(l);
1893 }
1894
1895 private Formatter(Charset charset, Locale l, File file)
1896 throws FileNotFoundException
1897 {
1898 this(l,
1899 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1900 }
1901
1902 /**
1903 * Constructs a new formatter.
1904 *
1905 * <p> The destination of the formatted output is a {@link StringBuilder}
1906 * which may be retrieved by invoking {@link #out out()} and whose
1907 * current content may be converted into a string by invoking {@link
1908 * #toString toString()}. The locale used is the {@linkplain
1909 * Locale#getDefault(Locale.Category) default locale} for
1910 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1911 * virtual machine.
1912 */
1913 public Formatter() {
1914 this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1915 }
1916
1917 /**
1918 * Constructs a new formatter with the specified destination.
1919 *
1920 * <p> The locale used is the {@linkplain
1921 * Locale#getDefault(Locale.Category) default locale} for
1922 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1923 * virtual machine.
1924 *
1925 * @param a
1926 * Destination for the formatted output. If {@code a} is
1927 * {@code null} then a {@link StringBuilder} will be created.
1928 */
1929 public Formatter(Appendable a) {
1930 this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1931 }
1932
1933 /**
1934 * Constructs a new formatter with the specified locale.
1935 *
1936 * <p> The destination of the formatted output is a {@link StringBuilder}
1937 * which may be retrieved by invoking {@link #out out()} and whose current
1938 * content may be converted into a string by invoking {@link #toString
1939 * toString()}.
1940 *
1941 * @param l
1942 * The {@linkplain java.util.Locale locale} to apply during
1943 * formatting. If {@code l} is {@code null} then no localization
1944 * is applied.
1945 */
1946 public Formatter(Locale l) {
1947 this(l, new StringBuilder());
1948 }
1949
1950 /**
1951 * Constructs a new formatter with the specified destination and locale.
1952 *
1953 * @param a
1954 * Destination for the formatted output. If {@code a} is
1955 * {@code null} then a {@link StringBuilder} will be created.
1956 *
1957 * @param l
1958 * The {@linkplain java.util.Locale locale} to apply during
1959 * formatting. If {@code l} is {@code null} then no localization
1960 * is applied.
1961 */
1962 public Formatter(Appendable a, Locale l) {
1963 this(l, nonNullAppendable(a));
1964 }
1965
1966 /**
1967 * Constructs a new formatter with the specified file name.
1968 *
1969 * <p> The charset used is the {@linkplain
1970 * java.nio.charset.Charset#defaultCharset() default charset} for this
1971 * instance of the Java virtual machine.
1972 *
1973 * <p> The locale used is the {@linkplain
1974 * Locale#getDefault(Locale.Category) default locale} for
1975 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1976 * virtual machine.
1977 *
1978 * @param fileName
1979 * The name of the file to use as the destination of this
1980 * formatter. If the file exists then it will be truncated to
1981 * zero size; otherwise, a new file will be created. The output
1982 * will be written to the file and is buffered.
1983 *
1984 * @throws SecurityException
1985 * If a security manager is present and {@link
1986 * SecurityManager#checkWrite checkWrite(fileName)} denies write
1987 * access to the file
1988 *
1989 * @throws FileNotFoundException
1990 * If the given file name does not denote an existing, writable
1991 * regular file and a new regular file of that name cannot be
1992 * created, or if some other error occurs while opening or
1993 * creating the file
1994 */
1995 public Formatter(String fileName) throws FileNotFoundException {
1996 this(Locale.getDefault(Locale.Category.FORMAT),
1997 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1998 }
1999
2000 /**
2001 * Constructs a new formatter with the specified file name and charset.
2002 *
2003 * <p> The locale used is the {@linkplain
2004 * Locale#getDefault(Locale.Category) default locale} for
2005 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2006 * virtual machine.
2007 *
2008 * @param fileName
2009 * The name of the file to use as the destination of this
2010 * formatter. If the file exists then it will be truncated to
2011 * zero size; otherwise, a new file will be created. The output
2012 * will be written to the file and is buffered.
2013 *
2014 * @param csn
2015 * The name of a supported {@linkplain java.nio.charset.Charset
2016 * charset}
2017 *
2018 * @throws FileNotFoundException
2019 * If the given file name does not denote an existing, writable
2020 * regular file and a new regular file of that name cannot be
2021 * created, or if some other error occurs while opening or
2022 * creating the file
2023 *
2024 * @throws SecurityException
2025 * If a security manager is present and {@link
2026 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2027 * access to the file
2028 *
2029 * @throws UnsupportedEncodingException
2030 * If the named charset is not supported
2031 */
2032 public Formatter(String fileName, String csn)
2033 throws FileNotFoundException, UnsupportedEncodingException
2034 {
2035 this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2036 }
2037
2038 /**
2039 * Constructs a new formatter with the specified file name, charset, and
2040 * locale.
2041 *
2042 * @param fileName
2043 * The name of the file to use as the destination of this
2044 * formatter. If the file exists then it will be truncated to
2045 * zero size; otherwise, a new file will be created. The output
2046 * will be written to the file and is buffered.
2047 *
2048 * @param csn
2049 * The name of a supported {@linkplain java.nio.charset.Charset
2050 * charset}
2051 *
2052 * @param l
2053 * The {@linkplain java.util.Locale locale} to apply during
2054 * formatting. If {@code l} is {@code null} then no localization
2055 * is applied.
2056 *
2057 * @throws FileNotFoundException
2058 * If the given file name does not denote an existing, writable
2059 * regular file and a new regular file of that name cannot be
2060 * created, or if some other error occurs while opening or
2061 * creating the file
2062 *
2063 * @throws SecurityException
2064 * If a security manager is present and {@link
2065 * SecurityManager#checkWrite checkWrite(fileName)} denies write
2066 * access to the file
2067 *
2068 * @throws UnsupportedEncodingException
2069 * If the named charset is not supported
2070 */
2071 public Formatter(String fileName, String csn, Locale l)
2072 throws FileNotFoundException, UnsupportedEncodingException
2073 {
2074 this(toCharset(csn), l, new File(fileName));
2075 }
2076
2077 /**
2078 * Constructs a new formatter with the specified file.
2079 *
2080 * <p> The charset used is the {@linkplain
2081 * java.nio.charset.Charset#defaultCharset() default charset} for this
2082 * instance of the Java virtual machine.
2083 *
2084 * <p> The locale used is the {@linkplain
2085 * Locale#getDefault(Locale.Category) default locale} for
2086 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2087 * virtual machine.
2088 *
2089 * @param file
2090 * The file to use as the destination of this formatter. If the
2091 * file exists then it will be truncated to zero size; otherwise,
2092 * a new file will be created. The output will be written to the
2093 * file and is buffered.
2094 *
2095 * @throws SecurityException
2096 * If a security manager is present and {@link
2097 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2098 * write access to the file
2099 *
2100 * @throws FileNotFoundException
2101 * If the given file object does not denote an existing, writable
2102 * regular file and a new regular file of that name cannot be
2103 * created, or if some other error occurs while opening or
2104 * creating the file
2105 */
2106 public Formatter(File file) throws FileNotFoundException {
2107 this(Locale.getDefault(Locale.Category.FORMAT),
2108 new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2109 }
2110
2111 /**
2112 * Constructs a new formatter with the specified file and charset.
2113 *
2114 * <p> The locale used is the {@linkplain
2115 * Locale#getDefault(Locale.Category) default locale} for
2116 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2117 * virtual machine.
2118 *
2119 * @param file
2120 * The file to use as the destination of this formatter. If the
2121 * file exists then it will be truncated to zero size; otherwise,
2122 * a new file will be created. The output will be written to the
2123 * file and is buffered.
2124 *
2125 * @param csn
2126 * The name of a supported {@linkplain java.nio.charset.Charset
2127 * charset}
2128 *
2129 * @throws FileNotFoundException
2130 * If the given file object does not denote an existing, writable
2131 * regular file and a new regular file of that name cannot be
2132 * created, or if some other error occurs while opening or
2133 * creating the file
2134 *
2135 * @throws SecurityException
2136 * If a security manager is present and {@link
2137 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2138 * write access to the file
2139 *
2140 * @throws UnsupportedEncodingException
2141 * If the named charset is not supported
2142 */
2143 public Formatter(File file, String csn)
2144 throws FileNotFoundException, UnsupportedEncodingException
2145 {
2146 this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2147 }
2148
2149 /**
2150 * Constructs a new formatter with the specified file, charset, and
2151 * locale.
2152 *
2153 * @param file
2154 * The file to use as the destination of this formatter. If the
2155 * file exists then it will be truncated to zero size; otherwise,
2156 * a new file will be created. The output will be written to the
2157 * file and is buffered.
2158 *
2159 * @param csn
2160 * The name of a supported {@linkplain java.nio.charset.Charset
2161 * charset}
2162 *
2163 * @param l
2164 * The {@linkplain java.util.Locale locale} to apply during
2165 * formatting. If {@code l} is {@code null} then no localization
2166 * is applied.
2167 *
2168 * @throws FileNotFoundException
2169 * If the given file object does not denote an existing, writable
2170 * regular file and a new regular file of that name cannot be
2171 * created, or if some other error occurs while opening or
2172 * creating the file
2173 *
2174 * @throws SecurityException
2175 * If a security manager is present and {@link
2176 * SecurityManager#checkWrite checkWrite(file.getPath())} denies
2177 * write access to the file
2178 *
2179 * @throws UnsupportedEncodingException
2180 * If the named charset is not supported
2181 */
2182 public Formatter(File file, String csn, Locale l)
2183 throws FileNotFoundException, UnsupportedEncodingException
2184 {
2185 this(toCharset(csn), l, file);
2186 }
2187
2188 /**
2189 * Constructs a new formatter with the specified print stream.
2190 *
2191 * <p> The locale used is the {@linkplain
2192 * Locale#getDefault(Locale.Category) default locale} for
2193 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2194 * virtual machine.
2195 *
2196 * <p> Characters are written to the given {@link java.io.PrintStream
2197 * PrintStream} object and are therefore encoded using that object's
2198 * charset.
2199 *
2200 * @param ps
2201 * The stream to use as the destination of this formatter.
2202 */
2203 public Formatter(PrintStream ps) {
2204 this(Locale.getDefault(Locale.Category.FORMAT),
2205 (Appendable)Objects.requireNonNull(ps));
2206 }
2207
2208 /**
2209 * Constructs a new formatter with the specified output stream.
2210 *
2211 * <p> The charset used is the {@linkplain
2212 * java.nio.charset.Charset#defaultCharset() default charset} for this
2213 * instance of the Java virtual machine.
2214 *
2215 * <p> The locale used is the {@linkplain
2216 * Locale#getDefault(Locale.Category) default locale} for
2217 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2218 * virtual machine.
2219 *
2220 * @param os
2221 * The output stream to use as the destination of this formatter.
2222 * The output will be buffered.
2223 */
2224 public Formatter(OutputStream os) {
2225 this(Locale.getDefault(Locale.Category.FORMAT),
2226 new BufferedWriter(new OutputStreamWriter(os)));
2227 }
2228
2229 /**
2230 * Constructs a new formatter with the specified output stream and
2231 * charset.
2232 *
2233 * <p> The locale used is the {@linkplain
2234 * Locale#getDefault(Locale.Category) default locale} for
2235 * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2236 * virtual machine.
2237 *
2238 * @param os
2239 * The output stream to use as the destination of this formatter.
2240 * The output will be buffered.
2241 *
2242 * @param csn
2243 * The name of a supported {@linkplain java.nio.charset.Charset
2244 * charset}
2245 *
2246 * @throws UnsupportedEncodingException
2247 * If the named charset is not supported
2248 */
2249 public Formatter(OutputStream os, String csn)
2250 throws UnsupportedEncodingException
2251 {
2252 this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2253 }
2254
2255 /**
2256 * Constructs a new formatter with the specified output stream, charset,
2257 * and locale.
2258 *
2259 * @param os
2260 * The output stream to use as the destination of this formatter.
2261 * The output will be buffered.
2262 *
2263 * @param csn
2264 * The name of a supported {@linkplain java.nio.charset.Charset
2265 * charset}
2266 *
2267 * @param l
2268 * The {@linkplain java.util.Locale locale} to apply during
2269 * formatting. If {@code l} is {@code null} then no localization
2270 * is applied.
2271 *
2272 * @throws UnsupportedEncodingException
2273 * If the named charset is not supported
2274 */
2275 public Formatter(OutputStream os, String csn, Locale l)
2276 throws UnsupportedEncodingException
2277 {
2278 this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2279 }
2280
2281 private static char getZero(Locale l) {
2282 if ((l != null) && !l.equals(Locale.US)) {
2283 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2284 return dfs.getZeroDigit();
2285 } else {
2286 return '0';
2287 }
2288 }
2289
2290 /**
2291 * Returns the locale set by the construction of this formatter.
2292 *
2293 * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2294 * for this object which has a locale argument does not change this value.
2295 *
2296 * @return {@code null} if no localization is applied, otherwise a
2297 * locale
2298 *
2299 * @throws FormatterClosedException
2300 * If this formatter has been closed by invoking its {@link
2301 * #close()} method
2302 */
2303 public Locale locale() {
2304 ensureOpen();
2305 return l;
2306 }
2307
2308 /**
2309 * Returns the destination for the output.
2310 *
2311 * @return The destination for the output
2312 *
2313 * @throws FormatterClosedException
2314 * If this formatter has been closed by invoking its {@link
2315 * #close()} method
2316 */
2317 public Appendable out() {
2318 ensureOpen();
2319 return a;
2320 }
2321
2322 /**
2323 * Returns the result of invoking {@code toString()} on the destination
2324 * for the output. For example, the following code formats text into a
2325 * {@link StringBuilder} then retrieves the resultant string:
2326 *
2327 * <blockquote><pre>
2328 * Formatter f = new Formatter();
2329 * f.format("Last reboot at %tc", lastRebootDate);
2330 * String s = f.toString();
2331 * // -> s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2332 * </pre></blockquote>
2333 *
2334 * <p> An invocation of this method behaves in exactly the same way as the
2335 * invocation
2336 *
2337 * <pre>
2338 * out().toString() </pre>
2339 *
2340 * <p> Depending on the specification of {@code toString} for the {@link
2341 * Appendable}, the returned string may or may not contain the characters
2342 * written to the destination. For instance, buffers typically return
2343 * their contents in {@code toString()}, but streams cannot since the
2344 * data is discarded.
2345 *
2346 * @return The result of invoking {@code toString()} on the destination
2347 * for the output
2348 *
2349 * @throws FormatterClosedException
2350 * If this formatter has been closed by invoking its {@link
2351 * #close()} method
2352 */
2353 public String toString() {
2354 ensureOpen();
2355 return a.toString();
2356 }
2357
2358 /**
2359 * Flushes this formatter. If the destination implements the {@link
2360 * java.io.Flushable} interface, its {@code flush} method will be invoked.
2361 *
2362 * <p> Flushing a formatter writes any buffered output in the destination
2363 * to the underlying stream.
2364 *
2365 * @throws FormatterClosedException
2366 * If this formatter has been closed by invoking its {@link
2367 * #close()} method
2368 */
2369 public void flush() {
2370 ensureOpen();
2371 if (a instanceof Flushable) {
2372 try {
2373 ((Flushable)a).flush();
2374 } catch (IOException ioe) {
2375 lastException = ioe;
2376 }
2377 }
2378 }
2379
2380 /**
2381 * Closes this formatter. If the destination implements the {@link
2382 * java.io.Closeable} interface, its {@code close} method will be invoked.
2383 *
2384 * <p> Closing a formatter allows it to release resources it may be holding
2385 * (such as open files). If the formatter is already closed, then invoking
2386 * this method has no effect.
2387 *
2388 * <p> Attempting to invoke any methods except {@link #ioException()} in
2389 * this formatter after it has been closed will result in a {@link
2390 * FormatterClosedException}.
2391 */
2392 public void close() {
2393 if (a == null)
2394 return;
2395 try {
2396 if (a instanceof Closeable)
2397 ((Closeable)a).close();
2398 } catch (IOException ioe) {
2399 lastException = ioe;
2400 } finally {
2401 a = null;
2402 }
2403 }
2404
2405 private void ensureOpen() {
2406 if (a == null)
2407 throw new FormatterClosedException();
2408 }
2409
2410 /**
2411 * Returns the {@code IOException} last thrown by this formatter's {@link
2412 * Appendable}.
2413 *
2414 * <p> If the destination's {@code append()} method never throws
2415 * {@code IOException}, then this method will always return {@code null}.
2416 *
2417 * @return The last exception thrown by the Appendable or {@code null} if
2418 * no such exception exists.
2419 */
2420 public IOException ioException() {
2421 return lastException;
2422 }
2423
2424 /**
2425 * Writes a formatted string to this object's destination using the
2426 * specified format string and arguments. The locale used is the one
2427 * defined during the construction of this formatter.
2428 *
2429 * @param format
2430 * A format string as described in <a href="#syntax">Format string
2431 * syntax</a>.
2432 *
2433 * @param args
2434 * Arguments referenced by the format specifiers in the format
2435 * string. If there are more arguments than format specifiers, the
2436 * extra arguments are ignored. The maximum number of arguments is
2437 * limited by the maximum dimension of a Java array as defined by
2438 * <cite>The Java™ Virtual Machine Specification</cite>.
2439 *
2440 * @throws IllegalFormatException
2441 * If a format string contains an illegal syntax, a format
2442 * specifier that is incompatible with the given arguments,
2443 * insufficient arguments given the format string, or other
2444 * illegal conditions. For specification of all possible
2445 * formatting errors, see the <a href="#detail">Details</a>
2446 * section of the formatter class specification.
2447 *
2448 * @throws FormatterClosedException
2449 * If this formatter has been closed by invoking its {@link
2450 * #close()} method
2451 *
2452 * @return This formatter
2453 */
2454 public Formatter format(String format, Object ... args) {
2455 return format(l, format, args);
2456 }
2457
2458 /**
2459 * Writes a formatted string to this object's destination using the
2460 * specified locale, format string, and arguments.
2461 *
2462 * @param l
2463 * The {@linkplain java.util.Locale locale} to apply during
2464 * formatting. If {@code l} is {@code null} then no localization
2465 * is applied. This does not change this object's locale that was
2466 * set during construction.
2467 *
2468 * @param format
2469 * A format string as described in <a href="#syntax">Format string
2470 * syntax</a>
2471 *
2472 * @param args
2473 * Arguments referenced by the format specifiers in the format
2474 * string. If there are more arguments than format specifiers, the
2475 * extra arguments are ignored. The maximum number of arguments is
2476 * limited by the maximum dimension of a Java array as defined by
2477 * <cite>The Java™ Virtual Machine Specification</cite>.
2478 *
2479 * @throws IllegalFormatException
2480 * If a format string contains an illegal syntax, a format
2481 * specifier that is incompatible with the given arguments,
2482 * insufficient arguments given the format string, or other
2483 * illegal conditions. For specification of all possible
2484 * formatting errors, see the <a href="#detail">Details</a>
2485 * section of the formatter class specification.
2486 *
2487 * @throws FormatterClosedException
2488 * If this formatter has been closed by invoking its {@link
2489 * #close()} method
2490 *
2491 * @return This formatter
2492 */
2493 public Formatter format(Locale l, String format, Object ... args) {
2494 ensureOpen();
2495
2496 // index of last argument referenced
2497 int last = -1;
2498 // last ordinary index
2499 int lasto = -1;
2500
2501 FormatString[] fsa = parse(format);
2502 for (int i = 0; i < fsa.length; i++) {
2503 FormatString fs = fsa[i];
2504 int index = fs.index();
2505 try {
2506 switch (index) {
2507 case -2: // fixed string, "%n", or "%%"
2508 fs.print(null, l);
2509 break;
2510 case -1: // relative index
2511 if (last < 0 || (args != null && last > args.length - 1))
2512 throw new MissingFormatArgumentException(fs.toString());
2513 fs.print((args == null ? null : args[last]), l);
2514 break;
2515 case 0: // ordinary index
2516 lasto++;
2517 last = lasto;
2518 if (args != null && lasto > args.length - 1)
2519 throw new MissingFormatArgumentException(fs.toString());
2520 fs.print((args == null ? null : args[lasto]), l);
2521 break;
2522 default: // explicit index
2523 last = index - 1;
2524 if (args != null && last > args.length - 1)
2525 throw new MissingFormatArgumentException(fs.toString());
2526 fs.print((args == null ? null : args[last]), l);
2527 break;
2528 }
2529 } catch (IOException x) {
2530 lastException = x;
2531 }
2532 }
2533 return this;
2534 }
2535
2536 // %[argument_index$][flags][width][.precision][t]conversion
2537 private static final String formatSpecifier
2538 = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2539
2540 private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2541
2542 /**
2543 * Finds format specifiers in the format string.
2544 */
2545 private FormatString[] parse(String s) {
2546 ArrayList<FormatString> al = new ArrayList<>();
2547 Matcher m = fsPattern.matcher(s);
2548 for (int i = 0, len = s.length(); i < len; ) {
2549 if (m.find(i)) {
2550 // Anything between the start of the string and the beginning
2551 // of the format specifier is either fixed text or contains
2552 // an invalid format string.
2553 if (m.start() != i) {
2554 // Make sure we didn't miss any invalid format specifiers
2555 checkText(s, i, m.start());
2556 // Assume previous characters were fixed text
2557 al.add(new FixedString(s.substring(i, m.start())));
2558 }
2559
2560 al.add(new FormatSpecifier(m));
2561 i = m.end();
2562 } else {
2563 // No more valid format specifiers. Check for possible invalid
2564 // format specifiers.
2565 checkText(s, i, len);
2566 // The rest of the string is fixed text
2567 al.add(new FixedString(s.substring(i)));
2568 break;
2569 }
2570 }
2571 return al.toArray(new FormatString[al.size()]);
2572 }
2573
2574 private static void checkText(String s, int start, int end) {
2575 for (int i = start; i < end; i++) {
2576 // Any '%' found in the region starts an invalid format specifier.
2577 if (s.charAt(i) == '%') {
2578 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2579 throw new UnknownFormatConversionException(String.valueOf(c));
2580 }
2581 }
2582 }
2583
2584 private interface FormatString {
2585 int index();
2586 void print(Object arg, Locale l) throws IOException;
2587 String toString();
2588 }
2589
2590 private class FixedString implements FormatString {
2591 private String s;
2592 FixedString(String s) { this.s = s; }
2593 public int index() { return -2; }
2594 public void print(Object arg, Locale l)
2595 throws IOException { a.append(s); }
2596 public String toString() { return s; }
2597 }
2598
2599 /**
2600 * Enum for {@code BigDecimal} formatting.
2601 */
2602 public enum BigDecimalLayoutForm {
2603 /**
2604 * Format the {@code BigDecimal} in computerized scientific notation.
2605 */
2606 SCIENTIFIC,
2607
2608 /**
2609 * Format the {@code BigDecimal} as a decimal number.
2610 */
2611 DECIMAL_FLOAT
2612 };
2613
2614 private class FormatSpecifier implements FormatString {
2615 private int index = -1;
2616 private Flags f = Flags.NONE;
2617 private int width;
2618 private int precision;
2619 private boolean dt = false;
2620 private char c;
2621
2622 private int index(String s) {
2623 if (s != null) {
2624 try {
2625 index = Integer.parseInt(s.substring(0, s.length() - 1));
2626 } catch (NumberFormatException x) {
2627 assert(false);
2628 }
2629 } else {
2630 index = 0;
2631 }
2632 return index;
2633 }
2634
2635 public int index() {
2636 return index;
2637 }
2638
2639 private Flags flags(String s) {
2640 f = Flags.parse(s);
2641 if (f.contains(Flags.PREVIOUS))
2642 index = -1;
2643 return f;
2644 }
2645
2646 Flags flags() {
2647 return f;
2648 }
2649
2650 private int width(String s) {
2651 width = -1;
2652 if (s != null) {
2653 try {
2654 width = Integer.parseInt(s);
2655 if (width < 0)
2656 throw new IllegalFormatWidthException(width);
2657 } catch (NumberFormatException x) {
2658 assert(false);
2659 }
2660 }
2661 return width;
2662 }
2663
2664 int width() {
2665 return width;
2666 }
2667
2668 private int precision(String s) {
2669 precision = -1;
2670 if (s != null) {
2671 try {
2672 // remove the '.'
2673 precision = Integer.parseInt(s.substring(1));
2674 if (precision < 0)
2675 throw new IllegalFormatPrecisionException(precision);
2676 } catch (NumberFormatException x) {
2677 assert(false);
2678 }
2679 }
2680 return precision;
2681 }
2682
2683 int precision() {
2684 return precision;
2685 }
2686
2687 private char conversion(String s) {
2688 c = s.charAt(0);
2689 if (!dt) {
2690 if (!Conversion.isValid(c))
2691 throw new UnknownFormatConversionException(String.valueOf(c));
2692 if (Character.isUpperCase(c))
2693 f.add(Flags.UPPERCASE);
2694 c = Character.toLowerCase(c);
2695 if (Conversion.isText(c))
2696 index = -2;
2697 }
2698 return c;
2699 }
2700
2701 private char conversion() {
2702 return c;
2703 }
2704
2705 FormatSpecifier(Matcher m) {
2706 int idx = 1;
2707
2708 index(m.group(idx++));
2709 flags(m.group(idx++));
2710 width(m.group(idx++));
2711 precision(m.group(idx++));
2712
2713 String tT = m.group(idx++);
2714 if (tT != null) {
2715 dt = true;
2716 if (tT.equals("T"))
2717 f.add(Flags.UPPERCASE);
2718 }
2719
2720 conversion(m.group(idx));
2721
2722 if (dt)
2723 checkDateTime();
2724 else if (Conversion.isGeneral(c))
2725 checkGeneral();
2726 else if (Conversion.isCharacter(c))
2727 checkCharacter();
2728 else if (Conversion.isInteger(c))
2729 checkInteger();
2730 else if (Conversion.isFloat(c))
2731 checkFloat();
2732 else if (Conversion.isText(c))
2733 checkText();
2734 else
2735 throw new UnknownFormatConversionException(String.valueOf(c));
2736 }
2737
2738 public void print(Object arg, Locale l) throws IOException {
2739 if (dt) {
2740 printDateTime(arg, l);
2741 return;
2742 }
2743 switch(c) {
2744 case Conversion.DECIMAL_INTEGER:
2745 case Conversion.OCTAL_INTEGER:
2746 case Conversion.HEXADECIMAL_INTEGER:
2747 printInteger(arg, l);
2748 break;
2749 case Conversion.SCIENTIFIC:
2750 case Conversion.GENERAL:
2751 case Conversion.DECIMAL_FLOAT:
2752 case Conversion.HEXADECIMAL_FLOAT:
2753 printFloat(arg, l);
2754 break;
2755 case Conversion.CHARACTER:
2756 case Conversion.CHARACTER_UPPER:
2757 printCharacter(arg);
2758 break;
2759 case Conversion.BOOLEAN:
2760 printBoolean(arg);
2761 break;
2762 case Conversion.STRING:
2763 printString(arg, l);
2764 break;
2765 case Conversion.HASHCODE:
2766 printHashCode(arg);
2767 break;
2768 case Conversion.LINE_SEPARATOR:
2769 a.append(System.lineSeparator());
2770 break;
2771 case Conversion.PERCENT_SIGN:
2772 a.append('%');
2773 break;
2774 default:
2775 assert false;
2776 }
2777 }
2778
2779 private void printInteger(Object arg, Locale l) throws IOException {
2780 if (arg == null)
2781 print("null");
2782 else if (arg instanceof Byte)
2783 print(((Byte)arg).byteValue(), l);
2784 else if (arg instanceof Short)
2785 print(((Short)arg).shortValue(), l);
2786 else if (arg instanceof Integer)
2787 print(((Integer)arg).intValue(), l);
2788 else if (arg instanceof Long)
2789 print(((Long)arg).longValue(), l);
2790 else if (arg instanceof BigInteger)
2791 print(((BigInteger)arg), l);
2792 else
2793 failConversion(c, arg);
2794 }
2795
2796 private void printFloat(Object arg, Locale l) throws IOException {
2797 if (arg == null)
2798 print("null");
2799 else if (arg instanceof Float)
2800 print(((Float)arg).floatValue(), l);
2801 else if (arg instanceof Double)
2802 print(((Double)arg).doubleValue(), l);
2803 else if (arg instanceof BigDecimal)
2804 print(((BigDecimal)arg), l);
2805 else
2806 failConversion(c, arg);
2807 }
2808
2809 private void printDateTime(Object arg, Locale l) throws IOException {
2810 if (arg == null) {
2811 print("null");
2812 return;
2813 }
2814 Calendar cal = null;
2815
2816 // Instead of Calendar.setLenient(true), perhaps we should
2817 // wrap the IllegalArgumentException that might be thrown?
2818 if (arg instanceof Long) {
2819 // Note that the following method uses an instance of the
2820 // default time zone (TimeZone.getDefaultRef().
2821 cal = Calendar.getInstance(l == null ? Locale.US : l);
2822 cal.setTimeInMillis((Long)arg);
2823 } else if (arg instanceof Date) {
2824 // Note that the following method uses an instance of the
2825 // default time zone (TimeZone.getDefaultRef().
2826 cal = Calendar.getInstance(l == null ? Locale.US : l);
2827 cal.setTime((Date)arg);
2828 } else if (arg instanceof Calendar) {
2829 cal = (Calendar) ((Calendar) arg).clone();
2830 cal.setLenient(true);
2831 } else if (arg instanceof TemporalAccessor) {
2832 print((TemporalAccessor) arg, c, l);
2833 return;
2834 } else {
2835 failConversion(c, arg);
2836 }
2837 // Use the provided locale so that invocations of
2838 // localizedMagnitude() use optimizations for null.
2839 print(cal, c, l);
2840 }
2841
2842 private void printCharacter(Object arg) throws IOException {
2843 if (arg == null) {
2844 print("null");
2845 return;
2846 }
2847 String s = null;
2848 if (arg instanceof Character) {
2849 s = ((Character)arg).toString();
2850 } else if (arg instanceof Byte) {
2851 byte i = ((Byte)arg).byteValue();
2852 if (Character.isValidCodePoint(i))
2853 s = new String(Character.toChars(i));
2854 else
2855 throw new IllegalFormatCodePointException(i);
2856 } else if (arg instanceof Short) {
2857 short i = ((Short)arg).shortValue();
2858 if (Character.isValidCodePoint(i))
2859 s = new String(Character.toChars(i));
2860 else
2861 throw new IllegalFormatCodePointException(i);
2862 } else if (arg instanceof Integer) {
2863 int i = ((Integer)arg).intValue();
2864 if (Character.isValidCodePoint(i))
2865 s = new String(Character.toChars(i));
2866 else
2867 throw new IllegalFormatCodePointException(i);
2868 } else {
2869 failConversion(c, arg);
2870 }
2871 print(s);
2872 }
2873
2874 private void printString(Object arg, Locale l) throws IOException {
2875 if (arg instanceof Formattable) {
2876 Formatter fmt = Formatter.this;
2877 if (fmt.locale() != l)
2878 fmt = new Formatter(fmt.out(), l);
2879 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2880 } else {
2881 if (f.contains(Flags.ALTERNATE))
2882 failMismatch(Flags.ALTERNATE, 's');
2883 if (arg == null)
2884 print("null");
2885 else
2886 print(arg.toString());
2887 }
2888 }
2889
2890 private void printBoolean(Object arg) throws IOException {
2891 String s;
2892 if (arg != null)
2893 s = ((arg instanceof Boolean)
2894 ? ((Boolean)arg).toString()
2895 : Boolean.toString(true));
2896 else
2897 s = Boolean.toString(false);
2898 print(s);
2899 }
2900
2901 private void printHashCode(Object arg) throws IOException {
2902 String s = (arg == null
2903 ? "null"
2904 : Integer.toHexString(arg.hashCode()));
2905 print(s);
2906 }
2907
2908 private void print(String s) throws IOException {
2909 if (precision != -1 && precision < s.length())
2910 s = s.substring(0, precision);
2911 if (f.contains(Flags.UPPERCASE))
2912 s = s.toUpperCase();
2913 a.append(justify(s));
2914 }
2915
2916 private String justify(String s) {
2917 if (width == -1)
2918 return s;
2919 StringBuilder sb = new StringBuilder();
2920 boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2921 int sp = width - s.length();
2922 if (!pad)
2923 for (int i = 0; i < sp; i++) sb.append(' ');
2924 sb.append(s);
2925 if (pad)
2926 for (int i = 0; i < sp; i++) sb.append(' ');
2927 return sb.toString();
2928 }
2929
2930 public String toString() {
2931 StringBuilder sb = new StringBuilder("%");
2932 // Flags.UPPERCASE is set internally for legal conversions.
2933 Flags dupf = f.dup().remove(Flags.UPPERCASE);
2934 sb.append(dupf.toString());
2935 if (index > 0)
2936 sb.append(index).append('$');
2937 if (width != -1)
2938 sb.append(width);
2939 if (precision != -1)
2940 sb.append('.').append(precision);
2941 if (dt)
2942 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2943 sb.append(f.contains(Flags.UPPERCASE)
2944 ? Character.toUpperCase(c) : c);
2945 return sb.toString();
2946 }
2947
2948 private void checkGeneral() {
2949 if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2950 && f.contains(Flags.ALTERNATE))
2951 failMismatch(Flags.ALTERNATE, c);
2952 // '-' requires a width
2953 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2954 throw new MissingFormatWidthException(toString());
2955 checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2956 Flags.GROUP, Flags.PARENTHESES);
2957 }
2958
2959 private void checkDateTime() {
2960 if (precision != -1)
2961 throw new IllegalFormatPrecisionException(precision);
2962 if (!DateTime.isValid(c))
2963 throw new UnknownFormatConversionException("t" + c);
2964 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2965 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2966 // '-' requires a width
2967 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2968 throw new MissingFormatWidthException(toString());
2969 }
2970
2971 private void checkCharacter() {
2972 if (precision != -1)
2973 throw new IllegalFormatPrecisionException(precision);
2974 checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2975 Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2976 // '-' requires a width
2977 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2978 throw new MissingFormatWidthException(toString());
2979 }
2980
2981 private void checkInteger() {
2982 checkNumeric();
2983 if (precision != -1)
2984 throw new IllegalFormatPrecisionException(precision);
2985
2986 if (c == Conversion.DECIMAL_INTEGER)
2987 checkBadFlags(Flags.ALTERNATE);
2988 else if (c == Conversion.OCTAL_INTEGER)
2989 checkBadFlags(Flags.GROUP);
2990 else
2991 checkBadFlags(Flags.GROUP);
2992 }
2993
2994 private void checkBadFlags(Flags ... badFlags) {
2995 for (int i = 0; i < badFlags.length; i++)
2996 if (f.contains(badFlags[i]))
2997 failMismatch(badFlags[i], c);
2998 }
2999
3000 private void checkFloat() {
3001 checkNumeric();
3002 if (c == Conversion.DECIMAL_FLOAT) {
3003 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3004 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3005 } else if (c == Conversion.SCIENTIFIC) {
3006 checkBadFlags(Flags.GROUP);
3007 } else if (c == Conversion.GENERAL) {
3008 checkBadFlags(Flags.ALTERNATE);
3009 }
3010 }
3011
3012 private void checkNumeric() {
3013 if (width != -1 && width < 0)
3014 throw new IllegalFormatWidthException(width);
3015
3016 if (precision != -1 && precision < 0)
3017 throw new IllegalFormatPrecisionException(precision);
3018
3019 // '-' and '0' require a width
3020 if (width == -1
3021 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3022 throw new MissingFormatWidthException(toString());
3023
3024 // bad combination
3025 if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3026 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3027 throw new IllegalFormatFlagsException(f.toString());
3028 }
3029
3030 private void checkText() {
3031 if (precision != -1)
3032 throw new IllegalFormatPrecisionException(precision);
3033 switch (c) {
3034 case Conversion.PERCENT_SIGN:
3035 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3036 && f.valueOf() != Flags.NONE.valueOf())
3037 throw new IllegalFormatFlagsException(f.toString());
3038 // '-' requires a width
3039 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3040 throw new MissingFormatWidthException(toString());
3041 break;
3042 case Conversion.LINE_SEPARATOR:
3043 if (width != -1)
3044 throw new IllegalFormatWidthException(width);
3045 if (f.valueOf() != Flags.NONE.valueOf())
3046 throw new IllegalFormatFlagsException(f.toString());
3047 break;
3048 default:
3049 assert false;
3050 }
3051 }
3052
3053 private void print(byte value, Locale l) throws IOException {
3054 long v = value;
3055 if (value < 0
3056 && (c == Conversion.OCTAL_INTEGER
3057 || c == Conversion.HEXADECIMAL_INTEGER)) {
3058 v += (1L << 8);
3059 assert v >= 0 : v;
3060 }
3061 print(v, l);
3062 }
3063
3064 private void print(short value, Locale l) throws IOException {
3065 long v = value;
3066 if (value < 0
3067 && (c == Conversion.OCTAL_INTEGER
3068 || c == Conversion.HEXADECIMAL_INTEGER)) {
3069 v += (1L << 16);
3070 assert v >= 0 : v;
3071 }
3072 print(v, l);
3073 }
3074
3075 private void print(int value, Locale l) throws IOException {
3076 long v = value;
3077 if (value < 0
3078 && (c == Conversion.OCTAL_INTEGER
3079 || c == Conversion.HEXADECIMAL_INTEGER)) {
3080 v += (1L << 32);
3081 assert v >= 0 : v;
3082 }
3083 print(v, l);
3084 }
3085
3086 private void print(long value, Locale l) throws IOException {
3087
3088 StringBuilder sb = new StringBuilder();
3089
3090 if (c == Conversion.DECIMAL_INTEGER) {
3091 boolean neg = value < 0;
3092 char[] va;
3093 if (value < 0)
3094 va = Long.toString(value, 10).substring(1).toCharArray();
3095 else
3096 va = Long.toString(value, 10).toCharArray();
3097
3098 // leading sign indicator
3099 leadingSign(sb, neg);
3100
3101 // the value
3102 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3103
3104 // trailing sign indicator
3105 trailingSign(sb, neg);
3106 } else if (c == Conversion.OCTAL_INTEGER) {
3107 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3108 Flags.PLUS);
3109 String s = Long.toOctalString(value);
3110 int len = (f.contains(Flags.ALTERNATE)
3111 ? s.length() + 1
3112 : s.length());
3113
3114 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3115 if (f.contains(Flags.ALTERNATE))
3116 sb.append('0');
3117 if (f.contains(Flags.ZERO_PAD))
3118 for (int i = 0; i < width - len; i++) sb.append('0');
3119 sb.append(s);
3120 } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3121 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3122 Flags.PLUS);
3123 String s = Long.toHexString(value);
3124 int len = (f.contains(Flags.ALTERNATE)
3125 ? s.length() + 2
3126 : s.length());
3127
3128 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3129 if (f.contains(Flags.ALTERNATE))
3130 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3131 if (f.contains(Flags.ZERO_PAD))
3132 for (int i = 0; i < width - len; i++) sb.append('0');
3133 if (f.contains(Flags.UPPERCASE))
3134 s = s.toUpperCase();
3135 sb.append(s);
3136 }
3137
3138 // justify based on width
3139 a.append(justify(sb.toString()));
3140 }
3141
3142 // neg := val < 0
3143 private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3144 if (!neg) {
3145 if (f.contains(Flags.PLUS)) {
3146 sb.append('+');
3147 } else if (f.contains(Flags.LEADING_SPACE)) {
3148 sb.append(' ');
3149 }
3150 } else {
3151 if (f.contains(Flags.PARENTHESES))
3152 sb.append('(');
3153 else
3154 sb.append('-');
3155 }
3156 return sb;
3157 }
3158
3159 // neg := val < 0
3160 private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3161 if (neg && f.contains(Flags.PARENTHESES))
3162 sb.append(')');
3163 return sb;
3164 }
3165
3166 private void print(BigInteger value, Locale l) throws IOException {
3167 StringBuilder sb = new StringBuilder();
3168 boolean neg = value.signum() == -1;
3169 BigInteger v = value.abs();
3170
3171 // leading sign indicator
3172 leadingSign(sb, neg);
3173
3174 // the value
3175 if (c == Conversion.DECIMAL_INTEGER) {
3176 char[] va = v.toString().toCharArray();
3177 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3178 } else if (c == Conversion.OCTAL_INTEGER) {
3179 String s = v.toString(8);
3180
3181 int len = s.length() + sb.length();
3182 if (neg && f.contains(Flags.PARENTHESES))
3183 len++;
3184
3185 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3186 if (f.contains(Flags.ALTERNATE)) {
3187 len++;
3188 sb.append('0');
3189 }
3190 if (f.contains(Flags.ZERO_PAD)) {
3191 for (int i = 0; i < width - len; i++)
3192 sb.append('0');
3193 }
3194 sb.append(s);
3195 } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3196 String s = v.toString(16);
3197
3198 int len = s.length() + sb.length();
3199 if (neg && f.contains(Flags.PARENTHESES))
3200 len++;
3201
3202 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3203 if (f.contains(Flags.ALTERNATE)) {
3204 len += 2;
3205 sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3206 }
3207 if (f.contains(Flags.ZERO_PAD))
3208 for (int i = 0; i < width - len; i++)
3209 sb.append('0');
3210 if (f.contains(Flags.UPPERCASE))
3211 s = s.toUpperCase();
3212 sb.append(s);
3213 }
3214
3215 // trailing sign indicator
3216 trailingSign(sb, (value.signum() == -1));
3217
3218 // justify based on width
3219 a.append(justify(sb.toString()));
3220 }
3221
3222 private void print(float value, Locale l) throws IOException {
3223 print((double) value, l);
3224 }
3225
3226 private void print(double value, Locale l) throws IOException {
3227 StringBuilder sb = new StringBuilder();
3228 boolean neg = Double.compare(value, 0.0) == -1;
3229
3230 if (!Double.isNaN(value)) {
3231 double v = Math.abs(value);
3232
3233 // leading sign indicator
3234 leadingSign(sb, neg);
3235
3236 // the value
3237 if (!Double.isInfinite(v))
3238 print(sb, v, l, f, c, precision, neg);
3239 else
3240 sb.append(f.contains(Flags.UPPERCASE)
3241 ? "INFINITY" : "Infinity");
3242
3243 // trailing sign indicator
3244 trailingSign(sb, neg);
3245 } else {
3246 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3247 }
3248
3249 // justify based on width
3250 a.append(justify(sb.toString()));
3251 }
3252
3253 // !Double.isInfinite(value) && !Double.isNaN(value)
3254 private void print(StringBuilder sb, double value, Locale l,
3255 Flags f, char c, int precision, boolean neg)
3256 throws IOException
3257 {
3258 if (c == Conversion.SCIENTIFIC) {
3259 // Create a new FormattedFloatingDecimal with the desired
3260 // precision.
3261 int prec = (precision == -1 ? 6 : precision);
3262
3263 FormattedFloatingDecimal fd
3264 = FormattedFloatingDecimal.valueOf(value, prec,
3265 FormattedFloatingDecimal.Form.SCIENTIFIC);
3266
3267 char[] mant = addZeros(fd.getMantissa(), prec);
3268
3269 // If the precision is zero and the '#' flag is set, add the
3270 // requested decimal point.
3271 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3272 mant = addDot(mant);
3273
3274 char[] exp = (value == 0.0)
3275 ? new char[] {'+','0','0'} : fd.getExponent();
3276
3277 int newW = width;
3278 if (width != -1)
3279 newW = adjustWidth(width - exp.length - 1, f, neg);
3280 localizedMagnitude(sb, mant, f, newW, l);
3281
3282 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3283
3284 Flags flags = f.dup().remove(Flags.GROUP);
3285 char sign = exp[0];
3286 assert(sign == '+' || sign == '-');
3287 sb.append(sign);
3288
3289 char[] tmp = new char[exp.length - 1];
3290 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3291 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3292 } else if (c == Conversion.DECIMAL_FLOAT) {
3293 // Create a new FormattedFloatingDecimal with the desired
3294 // precision.
3295 int prec = (precision == -1 ? 6 : precision);
3296
3297 FormattedFloatingDecimal fd
3298 = FormattedFloatingDecimal.valueOf(value, prec,
3299 FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3300
3301 char[] mant = addZeros(fd.getMantissa(), prec);
3302
3303 // If the precision is zero and the '#' flag is set, add the
3304 // requested decimal point.
3305 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3306 mant = addDot(mant);
3307
3308 int newW = width;
3309 if (width != -1)
3310 newW = adjustWidth(width, f, neg);
3311 localizedMagnitude(sb, mant, f, newW, l);
3312 } else if (c == Conversion.GENERAL) {
3313 int prec = precision;
3314 if (precision == -1)
3315 prec = 6;
3316 else if (precision == 0)
3317 prec = 1;
3318
3319 char[] exp;
3320 char[] mant;
3321 int expRounded;
3322 if (value == 0.0) {
3323 exp = null;
3324 mant = new char[] {'0'};
3325 expRounded = 0;
3326 } else {
3327 FormattedFloatingDecimal fd
3328 = FormattedFloatingDecimal.valueOf(value, prec,
3329 FormattedFloatingDecimal.Form.GENERAL);
3330 exp = fd.getExponent();
3331 mant = fd.getMantissa();
3332 expRounded = fd.getExponentRounded();
3333 }
3334
3335 if (exp != null) {
3336 prec -= 1;
3337 } else {
3338 prec -= expRounded + 1;
3339 }
3340
3341 mant = addZeros(mant, prec);
3342 // If the precision is zero and the '#' flag is set, add the
3343 // requested decimal point.
3344 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3345 mant = addDot(mant);
3346
3347 int newW = width;
3348 if (width != -1) {
3349 if (exp != null)
3350 newW = adjustWidth(width - exp.length - 1, f, neg);
3351 else
3352 newW = adjustWidth(width, f, neg);
3353 }
3354 localizedMagnitude(sb, mant, f, newW, l);
3355
3356 if (exp != null) {
3357 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3358
3359 Flags flags = f.dup().remove(Flags.GROUP);
3360 char sign = exp[0];
3361 assert(sign == '+' || sign == '-');
3362 sb.append(sign);
3363
3364 char[] tmp = new char[exp.length - 1];
3365 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3366 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3367 }
3368 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3369 int prec = precision;
3370 if (precision == -1)
3371 // assume that we want all of the digits
3372 prec = 0;
3373 else if (precision == 0)
3374 prec = 1;
3375
3376 String s = hexDouble(value, prec);
3377
3378 char[] va;
3379 boolean upper = f.contains(Flags.UPPERCASE);
3380 sb.append(upper ? "0X" : "0x");
3381
3382 if (f.contains(Flags.ZERO_PAD))
3383 for (int i = 0; i < width - s.length() - 2; i++)
3384 sb.append('0');
3385
3386 int idx = s.indexOf('p');
3387 va = s.substring(0, idx).toCharArray();
3388 if (upper) {
3389 String tmp = new String(va);
3390 // don't localize hex
3391 tmp = tmp.toUpperCase(Locale.US);
3392 va = tmp.toCharArray();
3393 }
3394 sb.append(prec != 0 ? addZeros(va, prec) : va);
3395 sb.append(upper ? 'P' : 'p');
3396 sb.append(s.substring(idx+1));
3397 }
3398 }
3399
3400 // Add zeros to the requested precision.
3401 private char[] addZeros(char[] v, int prec) {
3402 // Look for the dot. If we don't find one, the we'll need to add
3403 // it before we add the zeros.
3404 int i;
3405 for (i = 0; i < v.length; i++) {
3406 if (v[i] == '.')
3407 break;
3408 }
3409 boolean needDot = false;
3410 if (i == v.length) {
3411 needDot = true;
3412 }
3413
3414 // Determine existing precision.
3415 int outPrec = v.length - i - (needDot ? 0 : 1);
3416 assert (outPrec <= prec);
3417 if (outPrec == prec)
3418 return v;
3419
3420 // Create new array with existing contents.
3421 char[] tmp
3422 = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3423 System.arraycopy(v, 0, tmp, 0, v.length);
3424
3425 // Add dot if previously determined to be necessary.
3426 int start = v.length;
3427 if (needDot) {
3428 tmp[v.length] = '.';
3429 start++;
3430 }
3431
3432 // Add zeros.
3433 for (int j = start; j < tmp.length; j++)
3434 tmp[j] = '0';
3435
3436 return tmp;
3437 }
3438
3439 // Method assumes that d > 0.
3440 private String hexDouble(double d, int prec) {
3441 // Let Double.toHexString handle simple cases
3442 if(!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3443 // remove "0x"
3444 return Double.toHexString(d).substring(2);
3445 else {
3446 assert(prec >= 1 && prec <= 12);
3447
3448 int exponent = Math.getExponent(d);
3449 boolean subnormal
3450 = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3451
3452 // If this is subnormal input so normalize (could be faster to
3453 // do as integer operation).
3454 if (subnormal) {
3455 scaleUp = Math.scalb(1.0, 54);
3456 d *= scaleUp;
3457 // Calculate the exponent. This is not just exponent + 54
3458 // since the former is not the normalized exponent.
3459 exponent = Math.getExponent(d);
3460 assert exponent >= DoubleConsts.MIN_EXPONENT &&
3461 exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3462 }
3463
3464 int precision = 1 + prec*4;
3465 int shiftDistance
3466 = DoubleConsts.SIGNIFICAND_WIDTH - precision;
3467 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3468
3469 long doppel = Double.doubleToLongBits(d);
3470 // Deterime the number of bits to keep.
3471 long newSignif
3472 = (doppel & (DoubleConsts.EXP_BIT_MASK
3473 | DoubleConsts.SIGNIF_BIT_MASK))
3474 >> shiftDistance;
3475 // Bits to round away.
3476 long roundingBits = doppel & ~(~0L << shiftDistance);
3477
3478 // To decide how to round, look at the low-order bit of the
3479 // working significand, the highest order discarded bit (the
3480 // round bit) and whether any of the lower order discarded bits
3481 // are nonzero (the sticky bit).
3482
3483 boolean leastZero = (newSignif & 0x1L) == 0L;
3484 boolean round
3485 = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3486 boolean sticky = shiftDistance > 1 &&
3487 (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3488 if((leastZero && round && sticky) || (!leastZero && round)) {
3489 newSignif++;
3490 }
3491
3492 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3493 newSignif = signBit | (newSignif << shiftDistance);
3494 double result = Double.longBitsToDouble(newSignif);
3495
3496 if (Double.isInfinite(result) ) {
3497 // Infinite result generated by rounding
3498 return "1.0p1024";
3499 } else {
3500 String res = Double.toHexString(result).substring(2);
3501 if (!subnormal)
3502 return res;
3503 else {
3504 // Create a normalized subnormal string.
3505 int idx = res.indexOf('p');
3506 if (idx == -1) {
3507 // No 'p' character in hex string.
3508 assert false;
3509 return null;
3510 } else {
3511 // Get exponent and append at the end.
3512 String exp = res.substring(idx + 1);
3513 int iexp = Integer.parseInt(exp) -54;
3514 return res.substring(0, idx) + "p"
3515 + Integer.toString(iexp);
3516 }
3517 }
3518 }
3519 }
3520 }
3521
3522 private void print(BigDecimal value, Locale l) throws IOException {
3523 if (c == Conversion.HEXADECIMAL_FLOAT)
3524 failConversion(c, value);
3525 StringBuilder sb = new StringBuilder();
3526 boolean neg = value.signum() == -1;
3527 BigDecimal v = value.abs();
3528 // leading sign indicator
3529 leadingSign(sb, neg);
3530
3531 // the value
3532 print(sb, v, l, f, c, precision, neg);
3533
3534 // trailing sign indicator
3535 trailingSign(sb, neg);
3536
3537 // justify based on width
3538 a.append(justify(sb.toString()));
3539 }
3540
3541 // value > 0
3542 private void print(StringBuilder sb, BigDecimal value, Locale l,
3543 Flags f, char c, int precision, boolean neg)
3544 throws IOException
3545 {
3546 if (c == Conversion.SCIENTIFIC) {
3547 // Create a new BigDecimal with the desired precision.
3548 int prec = (precision == -1 ? 6 : precision);
3549 int scale = value.scale();
3550 int origPrec = value.precision();
3551 int nzeros = 0;
3552 int compPrec;
3553
3554 if (prec > origPrec - 1) {
3555 compPrec = origPrec;
3556 nzeros = prec - (origPrec - 1);
3557 } else {
3558 compPrec = prec + 1;
3559 }
3560
3561 MathContext mc = new MathContext(compPrec);
3562 BigDecimal v
3563 = new BigDecimal(value.unscaledValue(), scale, mc);
3564
3565 BigDecimalLayout bdl
3566 = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3567 BigDecimalLayoutForm.SCIENTIFIC);
3568
3569 char[] mant = bdl.mantissa();
3570
3571 // Add a decimal point if necessary. The mantissa may not
3572 // contain a decimal point if the scale is zero (the internal
3573 // representation has no fractional part) or the original
3574 // precision is one. Append a decimal point if '#' is set or if
3575 // we require zero padding to get to the requested precision.
3576 if ((origPrec == 1 || !bdl.hasDot())
3577 && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3578 mant = addDot(mant);
3579
3580 // Add trailing zeros in the case precision is greater than
3581 // the number of available digits after the decimal separator.
3582 mant = trailingZeros(mant, nzeros);
3583
3584 char[] exp = bdl.exponent();
3585 int newW = width;
3586 if (width != -1)
3587 newW = adjustWidth(width - exp.length - 1, f, neg);
3588 localizedMagnitude(sb, mant, f, newW, l);
3589
3590 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3591
3592 Flags flags = f.dup().remove(Flags.GROUP);
3593 char sign = exp[0];
3594 assert(sign == '+' || sign == '-');
3595 sb.append(exp[0]);
3596
3597 char[] tmp = new char[exp.length - 1];
3598 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3599 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3600 } else if (c == Conversion.DECIMAL_FLOAT) {
3601 // Create a new BigDecimal with the desired precision.
3602 int prec = (precision == -1 ? 6 : precision);
3603 int scale = value.scale();
3604
3605 if (scale > prec) {
3606 // more "scale" digits than the requested "precision"
3607 int compPrec = value.precision();
3608 if (compPrec <= scale) {
3609 // case of 0.xxxxxx
3610 value = value.setScale(prec, RoundingMode.HALF_UP);
3611 } else {
3612 compPrec -= (scale - prec);
3613 value = new BigDecimal(value.unscaledValue(),
3614 scale,
3615 new MathContext(compPrec));
3616 }
3617 }
3618 BigDecimalLayout bdl = new BigDecimalLayout(
3619 value.unscaledValue(),
3620 value.scale(),
3621 BigDecimalLayoutForm.DECIMAL_FLOAT);
3622
3623 char mant[] = bdl.mantissa();
3624 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3625
3626 // Add a decimal point if necessary. The mantissa may not
3627 // contain a decimal point if the scale is zero (the internal
3628 // representation has no fractional part). Append a decimal
3629 // point if '#' is set or we require zero padding to get to the
3630 // requested precision.
3631 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3632 mant = addDot(bdl.mantissa());
3633
3634 // Add trailing zeros if the precision is greater than the
3635 // number of available digits after the decimal separator.
3636 mant = trailingZeros(mant, nzeros);
3637
3638 localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3639 } else if (c == Conversion.GENERAL) {
3640 int prec = precision;
3641 if (precision == -1)
3642 prec = 6;
3643 else if (precision == 0)
3644 prec = 1;
3645
3646 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3647 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3648 if ((value.equals(BigDecimal.ZERO))
3649 || ((value.compareTo(tenToTheNegFour) != -1)
3650 && (value.compareTo(tenToThePrec) == -1))) {
3651
3652 int e = - value.scale()
3653 + (value.unscaledValue().toString().length() - 1);
3654
3655 // xxx.yyy
3656 // g precision (# sig digits) = #x + #y
3657 // f precision = #y
3658 // exponent = #x - 1
3659 // => f precision = g precision - exponent - 1
3660 // 0.000zzz
3661 // g precision (# sig digits) = #z
3662 // f precision = #0 (after '.') + #z
3663 // exponent = - #0 (after '.') - 1
3664 // => f precision = g precision - exponent - 1
3665 prec = prec - e - 1;
3666
3667 print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3668 neg);
3669 } else {
3670 print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3671 }
3672 } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3673 // This conversion isn't supported. The error should be
3674 // reported earlier.
3675 assert false;
3676 }
3677 }
3678
3679 private class BigDecimalLayout {
3680 private StringBuilder mant;
3681 private StringBuilder exp;
3682 private boolean dot = false;
3683 private int scale;
3684
3685 public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3686 layout(intVal, scale, form);
3687 }
3688
3689 public boolean hasDot() {
3690 return dot;
3691 }
3692
3693 public int scale() {
3694 return scale;
3695 }
3696
3697 // char[] with canonical string representation
3698 public char[] layoutChars() {
3699 StringBuilder sb = new StringBuilder(mant);
3700 if (exp != null) {
3701 sb.append('E');
3702 sb.append(exp);
3703 }
3704 return toCharArray(sb);
3705 }
3706
3707 public char[] mantissa() {
3708 return toCharArray(mant);
3709 }
3710
3711 // The exponent will be formatted as a sign ('+' or '-') followed
3712 // by the exponent zero-padded to include at least two digits.
3713 public char[] exponent() {
3714 return toCharArray(exp);
3715 }
3716
3717 private char[] toCharArray(StringBuilder sb) {
3718 if (sb == null)
3719 return null;
3720 char[] result = new char[sb.length()];
3721 sb.getChars(0, result.length, result, 0);
3722 return result;
3723 }
3724
3725 private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3726 char coeff[] = intVal.toString().toCharArray();
3727 this.scale = scale;
3728
3729 // Construct a buffer, with sufficient capacity for all cases.
3730 // If E-notation is needed, length will be: +1 if negative, +1
3731 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3732 // exponent. Otherwise it could have +1 if negative, plus
3733 // leading "0.00000"
3734 mant = new StringBuilder(coeff.length + 14);
3735
3736 if (scale == 0) {
3737 int len = coeff.length;
3738 if (len > 1) {
3739 mant.append(coeff[0]);
3740 if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3741 mant.append('.');
3742 dot = true;
3743 mant.append(coeff, 1, len - 1);
3744 exp = new StringBuilder("+");
3745 if (len < 10)
3746 exp.append("0").append(len - 1);
3747 else
3748 exp.append(len - 1);
3749 } else {
3750 mant.append(coeff, 1, len - 1);
3751 }
3752 } else {
3753 mant.append(coeff);
3754 if (form == BigDecimalLayoutForm.SCIENTIFIC)
3755 exp = new StringBuilder("+00");
3756 }
3757 return;
3758 }
3759 long adjusted = -(long) scale + (coeff.length - 1);
3760 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3761 // count of padding zeros
3762 int pad = scale - coeff.length;
3763 if (pad >= 0) {
3764 // 0.xxx form
3765 mant.append("0.");
3766 dot = true;
3767 for (; pad > 0 ; pad--) mant.append('0');
3768 mant.append(coeff);
3769 } else {
3770 if (-pad < coeff.length) {
3771 // xx.xx form
3772 mant.append(coeff, 0, -pad);
3773 mant.append('.');
3774 dot = true;
3775 mant.append(coeff, -pad, scale);
3776 } else {
3777 // xx form
3778 mant.append(coeff, 0, coeff.length);
3779 for (int i = 0; i < -scale; i++)
3780 mant.append('0');
3781 this.scale = 0;
3782 }
3783 }
3784 } else {
3785 // x.xxx form
3786 mant.append(coeff[0]);
3787 if (coeff.length > 1) {
3788 mant.append('.');
3789 dot = true;
3790 mant.append(coeff, 1, coeff.length-1);
3791 }
3792 exp = new StringBuilder();
3793 if (adjusted != 0) {
3794 long abs = Math.abs(adjusted);
3795 // require sign
3796 exp.append(adjusted < 0 ? '-' : '+');
3797 if (abs < 10)
3798 exp.append('0');
3799 exp.append(abs);
3800 } else {
3801 exp.append("+00");
3802 }
3803 }
3804 }
3805 }
3806
3807 private int adjustWidth(int width, Flags f, boolean neg) {
3808 int newW = width;
3809 if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3810 newW--;
3811 return newW;
3812 }
3813
3814 // Add a '.' to th mantissa if required
3815 private char[] addDot(char[] mant) {
3816 char[] tmp = mant;
3817 tmp = new char[mant.length + 1];
3818 System.arraycopy(mant, 0, tmp, 0, mant.length);
3819 tmp[tmp.length - 1] = '.';
3820 return tmp;
3821 }
3822
3823 // Add trailing zeros in the case precision is greater than the number
3824 // of available digits after the decimal separator.
3825 private char[] trailingZeros(char[] mant, int nzeros) {
3826 char[] tmp = mant;
3827 if (nzeros > 0) {
3828 tmp = new char[mant.length + nzeros];
3829 System.arraycopy(mant, 0, tmp, 0, mant.length);
3830 for (int i = mant.length; i < tmp.length; i++)
3831 tmp[i] = '0';
3832 }
3833 return tmp;
3834 }
3835
3836 private void print(Calendar t, char c, Locale l) throws IOException
3837 {
3838 StringBuilder sb = new StringBuilder();
3839 print(sb, t, c, l);
3840
3841 // justify based on width
3842 String s = justify(sb.toString());
3843 if (f.contains(Flags.UPPERCASE))
3844 s = s.toUpperCase();
3845
3846 a.append(s);
3847 }
3848
3849 private Appendable print(StringBuilder sb, Calendar t, char c,
3850 Locale l)
3851 throws IOException
3852 {
3853 if (sb == null)
3854 sb = new StringBuilder();
3855 switch (c) {
3856 case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3857 case DateTime.HOUR_0: // 'I' (01 - 12)
3858 case DateTime.HOUR_OF_DAY: // 'k' (0 - 23) -- like H
3859 case DateTime.HOUR: { // 'l' (1 - 12) -- like I
3860 int i = t.get(Calendar.HOUR_OF_DAY);
3861 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3862 i = (i == 0 || i == 12 ? 12 : i % 12);
3863 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3864 || c == DateTime.HOUR_0
3865 ? Flags.ZERO_PAD
3866 : Flags.NONE);
3867 sb.append(localizedMagnitude(null, i, flags, 2, l));
3868 break;
3869 }
3870 case DateTime.MINUTE: { // 'M' (00 - 59)
3871 int i = t.get(Calendar.MINUTE);
3872 Flags flags = Flags.ZERO_PAD;
3873 sb.append(localizedMagnitude(null, i, flags, 2, l));
3874 break;
3875 }
3876 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
3877 int i = t.get(Calendar.MILLISECOND) * 1000000;
3878 Flags flags = Flags.ZERO_PAD;
3879 sb.append(localizedMagnitude(null, i, flags, 9, l));
3880 break;
3881 }
3882 case DateTime.MILLISECOND: { // 'L' (000 - 999)
3883 int i = t.get(Calendar.MILLISECOND);
3884 Flags flags = Flags.ZERO_PAD;
3885 sb.append(localizedMagnitude(null, i, flags, 3, l));
3886 break;
3887 }
3888 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3889 long i = t.getTimeInMillis();
3890 Flags flags = Flags.NONE;
3891 sb.append(localizedMagnitude(null, i, flags, width, l));
3892 break;
3893 }
3894 case DateTime.AM_PM: { // 'p' (am or pm)
3895 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3896 String[] ampm = { "AM", "PM" };
3897 if (l != null && l != Locale.US) {
3898 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3899 ampm = dfs.getAmPmStrings();
3900 }
3901 String s = ampm[t.get(Calendar.AM_PM)];
3902 sb.append(s.toLowerCase(l != null ? l : Locale.US));
3903 break;
3904 }
3905 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3906 long i = t.getTimeInMillis() / 1000;
3907 Flags flags = Flags.NONE;
3908 sb.append(localizedMagnitude(null, i, flags, width, l));
3909 break;
3910 }
3911 case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
3912 int i = t.get(Calendar.SECOND);
3913 Flags flags = Flags.ZERO_PAD;
3914 sb.append(localizedMagnitude(null, i, flags, 2, l));
3915 break;
3916 }
3917 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3918 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3919 boolean neg = i < 0;
3920 sb.append(neg ? '-' : '+');
3921 if (neg)
3922 i = -i;
3923 int min = i / 60000;
3924 // combine minute and hour into a single integer
3925 int offset = (min / 60) * 100 + (min % 60);
3926 Flags flags = Flags.ZERO_PAD;
3927
3928 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3929 break;
3930 }
3931 case DateTime.ZONE: { // 'Z' (symbol)
3932 TimeZone tz = t.getTimeZone();
3933 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3934 TimeZone.SHORT,
3935 (l == null) ? Locale.US : l));
3936 break;
3937 }
3938
3939 // Date
3940 case DateTime.NAME_OF_DAY_ABBREV: // 'a'
3941 case DateTime.NAME_OF_DAY: { // 'A'
3942 int i = t.get(Calendar.DAY_OF_WEEK);
3943 Locale lt = ((l == null) ? Locale.US : l);
3944 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3945 if (c == DateTime.NAME_OF_DAY)
3946 sb.append(dfs.getWeekdays()[i]);
3947 else
3948 sb.append(dfs.getShortWeekdays()[i]);
3949 break;
3950 }
3951 case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
3952 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3953 case DateTime.NAME_OF_MONTH: { // 'B'
3954 int i = t.get(Calendar.MONTH);
3955 Locale lt = ((l == null) ? Locale.US : l);
3956 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3957 if (c == DateTime.NAME_OF_MONTH)
3958 sb.append(dfs.getMonths()[i]);
3959 else
3960 sb.append(dfs.getShortMonths()[i]);
3961 break;
3962 }
3963 case DateTime.CENTURY: // 'C' (00 - 99)
3964 case DateTime.YEAR_2: // 'y' (00 - 99)
3965 case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
3966 int i = t.get(Calendar.YEAR);
3967 int size = 2;
3968 switch (c) {
3969 case DateTime.CENTURY:
3970 i /= 100;
3971 break;
3972 case DateTime.YEAR_2:
3973 i %= 100;
3974 break;
3975 case DateTime.YEAR_4:
3976 size = 4;
3977 break;
3978 }
3979 Flags flags = Flags.ZERO_PAD;
3980 sb.append(localizedMagnitude(null, i, flags, size, l));
3981 break;
3982 }
3983 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
3984 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
3985 int i = t.get(Calendar.DATE);
3986 Flags flags = (c == DateTime.DAY_OF_MONTH_0
3987 ? Flags.ZERO_PAD
3988 : Flags.NONE);
3989 sb.append(localizedMagnitude(null, i, flags, 2, l));
3990 break;
3991 }
3992 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
3993 int i = t.get(Calendar.DAY_OF_YEAR);
3994 Flags flags = Flags.ZERO_PAD;
3995 sb.append(localizedMagnitude(null, i, flags, 3, l));
3996 break;
3997 }
3998 case DateTime.MONTH: { // 'm' (01 - 12)
3999 int i = t.get(Calendar.MONTH) + 1;
4000 Flags flags = Flags.ZERO_PAD;
4001 sb.append(localizedMagnitude(null, i, flags, 2, l));
4002 break;
4003 }
4004
4005 // Composites
4006 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4007 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4008 char sep = ':';
4009 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4010 print(sb, t, DateTime.MINUTE, l);
4011 if (c == DateTime.TIME) {
4012 sb.append(sep);
4013 print(sb, t, DateTime.SECOND, l);
4014 }
4015 break;
4016 }
4017 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4018 char sep = ':';
4019 print(sb, t, DateTime.HOUR_0, l).append(sep);
4020 print(sb, t, DateTime.MINUTE, l).append(sep);
4021 print(sb, t, DateTime.SECOND, l).append(' ');
4022 // this may be in wrong place for some locales
4023 StringBuilder tsb = new StringBuilder();
4024 print(tsb, t, DateTime.AM_PM, l);
4025 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4026 break;
4027 }
4028 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4029 char sep = ' ';
4030 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4031 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4032 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4033 print(sb, t, DateTime.TIME, l).append(sep);
4034 print(sb, t, DateTime.ZONE, l).append(sep);
4035 print(sb, t, DateTime.YEAR_4, l);
4036 break;
4037 }
4038 case DateTime.DATE: { // 'D' (mm/dd/yy)
4039 char sep = '/';
4040 print(sb, t, DateTime.MONTH, l).append(sep);
4041 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4042 print(sb, t, DateTime.YEAR_2, l);
4043 break;
4044 }
4045 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4046 char sep = '-';
4047 print(sb, t, DateTime.YEAR_4, l).append(sep);
4048 print(sb, t, DateTime.MONTH, l).append(sep);
4049 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4050 break;
4051 }
4052 default:
4053 assert false;
4054 }
4055 return sb;
4056 }
4057
4058 private void print(TemporalAccessor t, char c, Locale l) throws IOException {
4059 StringBuilder sb = new StringBuilder();
4060 print(sb, t, c, l);
4061 // justify based on width
4062 String s = justify(sb.toString());
4063 if (f.contains(Flags.UPPERCASE))
4064 s = s.toUpperCase();
4065 a.append(s);
4066 }
4067
4068 private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4069 Locale l) throws IOException {
4070 if (sb == null)
4071 sb = new StringBuilder();
4072 try {
4073 switch (c) {
4074 case DateTime.HOUR_OF_DAY_0: { // 'H' (00 - 23)
4075 int i = t.get(ChronoField.HOUR_OF_DAY);
4076 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4077 break;
4078 }
4079 case DateTime.HOUR_OF_DAY: { // 'k' (0 - 23) -- like H
4080 int i = t.get(ChronoField.HOUR_OF_DAY);
4081 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4082 break;
4083 }
4084 case DateTime.HOUR_0: { // 'I' (01 - 12)
4085 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4086 sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4087 break;
4088 }
4089 case DateTime.HOUR: { // 'l' (1 - 12) -- like I
4090 int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4091 sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4092 break;
4093 }
4094 case DateTime.MINUTE: { // 'M' (00 - 59)
4095 int i = t.get(ChronoField.MINUTE_OF_HOUR);
4096 Flags flags = Flags.ZERO_PAD;
4097 sb.append(localizedMagnitude(null, i, flags, 2, l));
4098 break;
4099 }
4100 case DateTime.NANOSECOND: { // 'N' (000000000 - 999999999)
4101 int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4102 Flags flags = Flags.ZERO_PAD;
4103 sb.append(localizedMagnitude(null, i, flags, 9, l));
4104 break;
4105 }
4106 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4107 int i = t.get(ChronoField.MILLI_OF_SECOND);
4108 Flags flags = Flags.ZERO_PAD;
4109 sb.append(localizedMagnitude(null, i, flags, 3, l));
4110 break;
4111 }
4112 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4113 long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4114 t.getLong(ChronoField.MILLI_OF_SECOND);
4115 Flags flags = Flags.NONE;
4116 sb.append(localizedMagnitude(null, i, flags, width, l));
4117 break;
4118 }
4119 case DateTime.AM_PM: { // 'p' (am or pm)
4120 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4121 String[] ampm = { "AM", "PM" };
4122 if (l != null && l != Locale.US) {
4123 DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4124 ampm = dfs.getAmPmStrings();
4125 }
4126 String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4127 sb.append(s.toLowerCase(l != null ? l : Locale.US));
4128 break;
4129 }
4130 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4131 long i = t.getLong(ChronoField.INSTANT_SECONDS);
4132 Flags flags = Flags.NONE;
4133 sb.append(localizedMagnitude(null, i, flags, width, l));
4134 break;
4135 }
4136 case DateTime.SECOND: { // 'S' (00 - 60 - leap second)
4137 int i = t.get(ChronoField.SECOND_OF_MINUTE);
4138 Flags flags = Flags.ZERO_PAD;
4139 sb.append(localizedMagnitude(null, i, flags, 2, l));
4140 break;
4141 }
4142 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4143 int i = t.get(ChronoField.OFFSET_SECONDS);
4144 boolean neg = i < 0;
4145 sb.append(neg ? '-' : '+');
4146 if (neg)
4147 i = -i;
4148 int min = i / 60;
4149 // combine minute and hour into a single integer
4150 int offset = (min / 60) * 100 + (min % 60);
4151 Flags flags = Flags.ZERO_PAD;
4152 sb.append(localizedMagnitude(null, offset, flags, 4, l));
4153 break;
4154 }
4155 case DateTime.ZONE: { // 'Z' (symbol)
4156 ZoneId zid = t.query(TemporalQueries.zone());
4157 if (zid == null) {
4158 throw new IllegalFormatConversionException(c, t.getClass());
4159 }
4160 if (!(zid instanceof ZoneOffset) &&
4161 t.isSupported(ChronoField.INSTANT_SECONDS)) {
4162 Instant instant = Instant.from(t);
4163 sb.append(TimeZone.getTimeZone(zid.getId())
4164 .getDisplayName(zid.getRules().isDaylightSavings(instant),
4165 TimeZone.SHORT,
4166 (l == null) ? Locale.US : l));
4167 break;
4168 }
4169 sb.append(zid.getId());
4170 break;
4171 }
4172 // Date
4173 case DateTime.NAME_OF_DAY_ABBREV: // 'a'
4174 case DateTime.NAME_OF_DAY: { // 'A'
4175 int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4176 Locale lt = ((l == null) ? Locale.US : l);
4177 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4178 if (c == DateTime.NAME_OF_DAY)
4179 sb.append(dfs.getWeekdays()[i]);
4180 else
4181 sb.append(dfs.getShortWeekdays()[i]);
4182 break;
4183 }
4184 case DateTime.NAME_OF_MONTH_ABBREV: // 'b'
4185 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4186 case DateTime.NAME_OF_MONTH: { // 'B'
4187 int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4188 Locale lt = ((l == null) ? Locale.US : l);
4189 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4190 if (c == DateTime.NAME_OF_MONTH)
4191 sb.append(dfs.getMonths()[i]);
4192 else
4193 sb.append(dfs.getShortMonths()[i]);
4194 break;
4195 }
4196 case DateTime.CENTURY: // 'C' (00 - 99)
4197 case DateTime.YEAR_2: // 'y' (00 - 99)
4198 case DateTime.YEAR_4: { // 'Y' (0000 - 9999)
4199 int i = t.get(ChronoField.YEAR_OF_ERA);
4200 int size = 2;
4201 switch (c) {
4202 case DateTime.CENTURY:
4203 i /= 100;
4204 break;
4205 case DateTime.YEAR_2:
4206 i %= 100;
4207 break;
4208 case DateTime.YEAR_4:
4209 size = 4;
4210 break;
4211 }
4212 Flags flags = Flags.ZERO_PAD;
4213 sb.append(localizedMagnitude(null, i, flags, size, l));
4214 break;
4215 }
4216 case DateTime.DAY_OF_MONTH_0: // 'd' (01 - 31)
4217 case DateTime.DAY_OF_MONTH: { // 'e' (1 - 31) -- like d
4218 int i = t.get(ChronoField.DAY_OF_MONTH);
4219 Flags flags = (c == DateTime.DAY_OF_MONTH_0
4220 ? Flags.ZERO_PAD
4221 : Flags.NONE);
4222 sb.append(localizedMagnitude(null, i, flags, 2, l));
4223 break;
4224 }
4225 case DateTime.DAY_OF_YEAR: { // 'j' (001 - 366)
4226 int i = t.get(ChronoField.DAY_OF_YEAR);
4227 Flags flags = Flags.ZERO_PAD;
4228 sb.append(localizedMagnitude(null, i, flags, 3, l));
4229 break;
4230 }
4231 case DateTime.MONTH: { // 'm' (01 - 12)
4232 int i = t.get(ChronoField.MONTH_OF_YEAR);
4233 Flags flags = Flags.ZERO_PAD;
4234 sb.append(localizedMagnitude(null, i, flags, 2, l));
4235 break;
4236 }
4237
4238 // Composites
4239 case DateTime.TIME: // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4240 case DateTime.TIME_24_HOUR: { // 'R' (hh:mm same as %H:%M)
4241 char sep = ':';
4242 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4243 print(sb, t, DateTime.MINUTE, l);
4244 if (c == DateTime.TIME) {
4245 sb.append(sep);
4246 print(sb, t, DateTime.SECOND, l);
4247 }
4248 break;
4249 }
4250 case DateTime.TIME_12_HOUR: { // 'r' (hh:mm:ss [AP]M)
4251 char sep = ':';
4252 print(sb, t, DateTime.HOUR_0, l).append(sep);
4253 print(sb, t, DateTime.MINUTE, l).append(sep);
4254 print(sb, t, DateTime.SECOND, l).append(' ');
4255 // this may be in wrong place for some locales
4256 StringBuilder tsb = new StringBuilder();
4257 print(tsb, t, DateTime.AM_PM, l);
4258 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4259 break;
4260 }
4261 case DateTime.DATE_TIME: { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4262 char sep = ' ';
4263 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4264 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4265 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4266 print(sb, t, DateTime.TIME, l).append(sep);
4267 print(sb, t, DateTime.ZONE, l).append(sep);
4268 print(sb, t, DateTime.YEAR_4, l);
4269 break;
4270 }
4271 case DateTime.DATE: { // 'D' (mm/dd/yy)
4272 char sep = '/';
4273 print(sb, t, DateTime.MONTH, l).append(sep);
4274 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4275 print(sb, t, DateTime.YEAR_2, l);
4276 break;
4277 }
4278 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4279 char sep = '-';
4280 print(sb, t, DateTime.YEAR_4, l).append(sep);
4281 print(sb, t, DateTime.MONTH, l).append(sep);
4282 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4283 break;
4284 }
4285 default:
4286 assert false;
4287 }
4288 } catch (DateTimeException x) {
4289 throw new IllegalFormatConversionException(c, t.getClass());
4290 }
4291 return sb;
4292 }
4293
4294 // -- Methods to support throwing exceptions --
4295
4296 private void failMismatch(Flags f, char c) {
4297 String fs = f.toString();
4298 throw new FormatFlagsConversionMismatchException(fs, c);
4299 }
4300
4301 private void failConversion(char c, Object arg) {
4302 throw new IllegalFormatConversionException(c, arg.getClass());
4303 }
4304
4305 private char getZero(Locale l) {
4306 if ((l != null) && !l.equals(locale())) {
4307 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4308 return dfs.getZeroDigit();
4309 }
4310 return zero;
4311 }
4312
4313 private StringBuilder
4314 localizedMagnitude(StringBuilder sb, long value, Flags f,
4315 int width, Locale l)
4316 {
4317 char[] va = Long.toString(value, 10).toCharArray();
4318 return localizedMagnitude(sb, va, f, width, l);
4319 }
4320
4321 private StringBuilder
4322 localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4323 int width, Locale l)
4324 {
4325 if (sb == null)
4326 sb = new StringBuilder();
4327 int begin = sb.length();
4328
4329 char zero = getZero(l);
4330
4331 // determine localized grouping separator and size
4332 char grpSep = '\0';
4333 int grpSize = -1;
4334 char decSep = '\0';
4335
4336 int len = value.length;
4337 int dot = len;
4338 for (int j = 0; j < len; j++) {
4339 if (value[j] == '.') {
4340 dot = j;
4341 break;
4342 }
4343 }
4344
4345 if (dot < len) {
4346 if (l == null || l.equals(Locale.US)) {
4347 decSep = '.';
4348 } else {
4349 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4350 decSep = dfs.getDecimalSeparator();
4351 }
4352 }
4353
4354 if (f.contains(Flags.GROUP)) {
4355 if (l == null || l.equals(Locale.US)) {
4356 grpSep = ',';
4357 grpSize = 3;
4358 } else {
4359 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4360 grpSep = dfs.getGroupingSeparator();
4361 DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4362 grpSize = df.getGroupingSize();
4363 }
4364 }
4365
4366 // localize the digits inserting group separators as necessary
4367 for (int j = 0; j < len; j++) {
4368 if (j == dot) {
4369 sb.append(decSep);
4370 // no more group separators after the decimal separator
4371 grpSep = '\0';
4372 continue;
4373 }
4374
4375 char c = value[j];
4376 sb.append((char) ((c - '0') + zero));
4377 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4378 sb.append(grpSep);
4379 }
4380
4381 // apply zero padding
4382 len = sb.length();
4383 if (width != -1 && f.contains(Flags.ZERO_PAD))
4384 for (int k = 0; k < width - len; k++)
4385 sb.insert(begin, zero);
4386
4387 return sb;
4388 }
4389 }
4390
4391 private static class Flags {
4392 private int flags;
4393
4394 static final Flags NONE = new Flags(0); // ''
4395
4396 // duplicate declarations from Formattable.java
4397 static final Flags LEFT_JUSTIFY = new Flags(1<<0); // '-'
4398 static final Flags UPPERCASE = new Flags(1<<1); // '^'
4399 static final Flags ALTERNATE = new Flags(1<<2); // '#'
4400
4401 // numerics
4402 static final Flags PLUS = new Flags(1<<3); // '+'
4403 static final Flags LEADING_SPACE = new Flags(1<<4); // ' '
4404 static final Flags ZERO_PAD = new Flags(1<<5); // '0'
4405 static final Flags GROUP = new Flags(1<<6); // ','
4406 static final Flags PARENTHESES = new Flags(1<<7); // '('
4407
4408 // indexing
4409 static final Flags PREVIOUS = new Flags(1<<8); // '<'
4410
4411 private Flags(int f) {
4412 flags = f;
4413 }
4414
4415 public int valueOf() {
4416 return flags;
4417 }
4418
4419 public boolean contains(Flags f) {
4420 return (flags & f.valueOf()) == f.valueOf();
4421 }
4422
4423 public Flags dup() {
4424 return new Flags(flags);
4425 }
4426
4427 private Flags add(Flags f) {
4428 flags |= f.valueOf();
4429 return this;
4430 }
4431
4432 public Flags remove(Flags f) {
4433 flags &= ~f.valueOf();
4434 return this;
4435 }
4436
4437 public static Flags parse(String s) {
4438 char[] ca = s.toCharArray();
4439 Flags f = new Flags(0);
4440 for (int i = 0; i < ca.length; i++) {
4441 Flags v = parse(ca[i]);
4442 if (f.contains(v))
4443 throw new DuplicateFormatFlagsException(v.toString());
4444 f.add(v);
4445 }
4446 return f;
4447 }
4448
4449 // parse those flags which may be provided by users
4450 private static Flags parse(char c) {
4451 switch (c) {
4452 case '-': return LEFT_JUSTIFY;
4453 case '#': return ALTERNATE;
4454 case '+': return PLUS;
4455 case ' ': return LEADING_SPACE;
4456 case '0': return ZERO_PAD;
4457 case ',': return GROUP;
4458 case '(': return PARENTHESES;
4459 case '<': return PREVIOUS;
4460 default:
4461 throw new UnknownFormatFlagsException(String.valueOf(c));
4462 }
4463 }
4464
4465 // Returns a string representation of the current {@code Flags}.
4466 public static String toString(Flags f) {
4467 return f.toString();
4468 }
4469
4470 public String toString() {
4471 StringBuilder sb = new StringBuilder();
4472 if (contains(LEFT_JUSTIFY)) sb.append('-');
4473 if (contains(UPPERCASE)) sb.append('^');
4474 if (contains(ALTERNATE)) sb.append('#');
4475 if (contains(PLUS)) sb.append('+');
4476 if (contains(LEADING_SPACE)) sb.append(' ');
4477 if (contains(ZERO_PAD)) sb.append('0');
4478 if (contains(GROUP)) sb.append(',');
4479 if (contains(PARENTHESES)) sb.append('(');
4480 if (contains(PREVIOUS)) sb.append('<');
4481 return sb.toString();
4482 }
4483 }
4484
4485 private static class Conversion {
4486 // Byte, Short, Integer, Long, BigInteger
4487 // (and associated primitives due to autoboxing)
4488 static final char DECIMAL_INTEGER = 'd';
4489 static final char OCTAL_INTEGER = 'o';
4490 static final char HEXADECIMAL_INTEGER = 'x';
4491 static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4492
4493 // Float, Double, BigDecimal
4494 // (and associated primitives due to autoboxing)
4495 static final char SCIENTIFIC = 'e';
4496 static final char SCIENTIFIC_UPPER = 'E';
4497 static final char GENERAL = 'g';
4498 static final char GENERAL_UPPER = 'G';
4499 static final char DECIMAL_FLOAT = 'f';
4500 static final char HEXADECIMAL_FLOAT = 'a';
4501 static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4502
4503 // Character, Byte, Short, Integer
4504 // (and associated primitives due to autoboxing)
4505 static final char CHARACTER = 'c';
4506 static final char CHARACTER_UPPER = 'C';
4507
4508 // java.util.Date, java.util.Calendar, long
4509 static final char DATE_TIME = 't';
4510 static final char DATE_TIME_UPPER = 'T';
4511
4512 // if (arg.TYPE != boolean) return boolean
4513 // if (arg != null) return true; else return false;
4514 static final char BOOLEAN = 'b';
4515 static final char BOOLEAN_UPPER = 'B';
4516 // if (arg instanceof Formattable) arg.formatTo()
4517 // else arg.toString();
4518 static final char STRING = 's';
4519 static final char STRING_UPPER = 'S';
4520 // arg.hashCode()
4521 static final char HASHCODE = 'h';
4522 static final char HASHCODE_UPPER = 'H';
4523
4524 static final char LINE_SEPARATOR = 'n';
4525 static final char PERCENT_SIGN = '%';
4526
4527 static boolean isValid(char c) {
4528 return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4529 || c == 't' || isCharacter(c));
4530 }
4531
4532 // Returns true iff the Conversion is applicable to all objects.
4533 static boolean isGeneral(char c) {
4534 switch (c) {
4535 case BOOLEAN:
4536 case BOOLEAN_UPPER:
4537 case STRING:
4538 case STRING_UPPER:
4539 case HASHCODE:
4540 case HASHCODE_UPPER:
4541 return true;
4542 default:
4543 return false;
4544 }
4545 }
4546
4547 // Returns true iff the Conversion is applicable to character.
4548 static boolean isCharacter(char c) {
4549 switch (c) {
4550 case CHARACTER:
4551 case CHARACTER_UPPER:
4552 return true;
4553 default:
4554 return false;
4555 }
4556 }
4557
4558 // Returns true iff the Conversion is an integer type.
4559 static boolean isInteger(char c) {
4560 switch (c) {
4561 case DECIMAL_INTEGER:
4562 case OCTAL_INTEGER:
4563 case HEXADECIMAL_INTEGER:
4564 case HEXADECIMAL_INTEGER_UPPER:
4565 return true;
4566 default:
4567 return false;
4568 }
4569 }
4570
4571 // Returns true iff the Conversion is a floating-point type.
4572 static boolean isFloat(char c) {
4573 switch (c) {
4574 case SCIENTIFIC:
4575 case SCIENTIFIC_UPPER:
4576 case GENERAL:
4577 case GENERAL_UPPER:
4578 case DECIMAL_FLOAT:
4579 case HEXADECIMAL_FLOAT:
4580 case HEXADECIMAL_FLOAT_UPPER:
4581 return true;
4582 default:
4583 return false;
4584 }
4585 }
4586
4587 // Returns true iff the Conversion does not require an argument
4588 static boolean isText(char c) {
4589 switch (c) {
4590 case LINE_SEPARATOR:
4591 case PERCENT_SIGN:
4592 return true;
4593 default:
4594 return false;
4595 }
4596 }
4597 }
4598
4599 private static class DateTime {
4600 static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4601 static final char HOUR_0 = 'I'; // (01 - 12)
4602 static final char HOUR_OF_DAY = 'k'; // (0 - 23) -- like H
4603 static final char HOUR = 'l'; // (1 - 12) -- like I
4604 static final char MINUTE = 'M'; // (00 - 59)
4605 static final char NANOSECOND = 'N'; // (000000000 - 999999999)
4606 static final char MILLISECOND = 'L'; // jdk, not in gnu (000 - 999)
4607 static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4608 static final char AM_PM = 'p'; // (am or pm)
4609 static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4610 static final char SECOND = 'S'; // (00 - 60 - leap second)
4611 static final char TIME = 'T'; // (24 hour hh:mm:ss)
4612 static final char ZONE_NUMERIC = 'z'; // (-1200 - +1200) - ls minus?
4613 static final char ZONE = 'Z'; // (symbol)
4614
4615 // Date
4616 static final char NAME_OF_DAY_ABBREV = 'a'; // 'a'
4617 static final char NAME_OF_DAY = 'A'; // 'A'
4618 static final char NAME_OF_MONTH_ABBREV = 'b'; // 'b'
4619 static final char NAME_OF_MONTH = 'B'; // 'B'
4620 static final char CENTURY = 'C'; // (00 - 99)
4621 static final char DAY_OF_MONTH_0 = 'd'; // (01 - 31)
4622 static final char DAY_OF_MONTH = 'e'; // (1 - 31) -- like d
4623 // * static final char ISO_WEEK_OF_YEAR_2 = 'g'; // cross %y %V
4624 // * static final char ISO_WEEK_OF_YEAR_4 = 'G'; // cross %Y %V
4625 static final char NAME_OF_MONTH_ABBREV_X = 'h'; // -- same b
4626 static final char DAY_OF_YEAR = 'j'; // (001 - 366)
4627 static final char MONTH = 'm'; // (01 - 12)
4628 // * static final char DAY_OF_WEEK_1 = 'u'; // (1 - 7) Monday
4629 // * static final char WEEK_OF_YEAR_SUNDAY = 'U'; // (0 - 53) Sunday+
4630 // * static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4631 // * static final char DAY_OF_WEEK_0 = 'w'; // (0 - 6) Sunday
4632 // * static final char WEEK_OF_YEAR_MONDAY = 'W'; // (00 - 53) Monday
4633 static final char YEAR_2 = 'y'; // (00 - 99)
4634 static final char YEAR_4 = 'Y'; // (0000 - 9999)
4635
4636 // Composites
4637 static final char TIME_12_HOUR = 'r'; // (hh:mm:ss [AP]M)
4638 static final char TIME_24_HOUR = 'R'; // (hh:mm same as %H:%M)
4639 // * static final char LOCALE_TIME = 'X'; // (%H:%M:%S) - parse format?
4640 static final char DATE_TIME = 'c';
4641 // (Sat Nov 04 12:02:33 EST 1999)
4642 static final char DATE = 'D'; // (mm/dd/yy)
4643 static final char ISO_STANDARD_DATE = 'F'; // (%Y-%m-%d)
4644 // * static final char LOCALE_DATE = 'x'; // (mm/dd/yy)
4645
4646 static boolean isValid(char c) {
4647 switch (c) {
4648 case HOUR_OF_DAY_0:
4649 case HOUR_0:
4650 case HOUR_OF_DAY:
4651 case HOUR:
4652 case MINUTE:
4653 case NANOSECOND:
4654 case MILLISECOND:
4655 case MILLISECOND_SINCE_EPOCH:
4656 case AM_PM:
4657 case SECONDS_SINCE_EPOCH:
4658 case SECOND:
4659 case TIME:
4660 case ZONE_NUMERIC:
4661 case ZONE:
4662
4663 // Date
4664 case NAME_OF_DAY_ABBREV:
4665 case NAME_OF_DAY:
4666 case NAME_OF_MONTH_ABBREV:
4667 case NAME_OF_MONTH:
4668 case CENTURY:
4669 case DAY_OF_MONTH_0:
4670 case DAY_OF_MONTH:
4671 // * case ISO_WEEK_OF_YEAR_2:
4672 // * case ISO_WEEK_OF_YEAR_4:
4673 case NAME_OF_MONTH_ABBREV_X:
4674 case DAY_OF_YEAR:
4675 case MONTH:
4676 // * case DAY_OF_WEEK_1:
4677 // * case WEEK_OF_YEAR_SUNDAY:
4678 // * case WEEK_OF_YEAR_MONDAY_01:
4679 // * case DAY_OF_WEEK_0:
4680 // * case WEEK_OF_YEAR_MONDAY:
4681 case YEAR_2:
4682 case YEAR_4:
4683
4684 // Composites
4685 case TIME_12_HOUR:
4686 case TIME_24_HOUR:
4687 // * case LOCALE_TIME:
4688 case DATE_TIME:
4689 case DATE:
4690 case ISO_STANDARD_DATE:
4691 // * case LOCALE_DATE:
4692 return true;
4693 default:
4694 return false;
4695 }
4696 }
4697 }
4698 }
4699